Araştırmacılar 60 yıllık kuantum bulmacasını tesadüfen çözdü, pek çok yeni keşif kapıda

Google'ın, mevcut en hızlı süper bilgisayarların 10 bin yılda yapacağı işlemleri 200 saniyede bitiren ve kuantum üstünlüğüne sahip bilgisayar tasarladığı yaklaşık altı ay önce açıklanmıştı (Reuters)
Google'ın, mevcut en hızlı süper bilgisayarların 10 bin yılda yapacağı işlemleri 200 saniyede bitiren ve kuantum üstünlüğüne sahip bilgisayar tasarladığı yaklaşık altı ay önce açıklanmıştı (Reuters)
TT

Araştırmacılar 60 yıllık kuantum bulmacasını tesadüfen çözdü, pek çok yeni keşif kapıda

Google'ın, mevcut en hızlı süper bilgisayarların 10 bin yılda yapacağı işlemleri 200 saniyede bitiren ve kuantum üstünlüğüne sahip bilgisayar tasarladığı yaklaşık altı ay önce açıklanmıştı (Reuters)
Google'ın, mevcut en hızlı süper bilgisayarların 10 bin yılda yapacağı işlemleri 200 saniyede bitiren ve kuantum üstünlüğüne sahip bilgisayar tasarladığı yaklaşık altı ay önce açıklanmıştı (Reuters)

Bilim insanları onlarca yıldır çözümsüz kalan bir kuantum bulmacasını tesadüfen çözdü. Bu keşif tamamen farklı yeni nesil bilgisayarların üretilmesinde büyük bir atılım sağlayabilir.
Çığır açan yeni keşif, yalnızca bilim insanlarının kafasını yarım yüzyılı aşkın süredir kurcalayan bir gizemi çözmekle kalmıyor, aynı zamanda araştırmacılara kuantum bilgisayarlar ve sensörler üretirken istifade edebilecekleri yeni kabiliyetler kazandırıyor.
Yeni keşif, bilim insanlarının artık tek bir atomun çekirdeğini, elektrik alanlarını kullanarak kontrol edebilecekleri anlamına geliyor. Bu, daha önce imkansızdı.
Araştırma, aslında bilim insanlarınca 60 yıl önce önerilmesinden bu yana değerlendiriliyordu. Ancak şimdiye dek teoride kalmış ve gerçekten uygulamaya çalışan herkesten yakasını kurtarmıştı.
Bilim insanları, artık bu keşifle, kuantum bilgisayarların daha hassas biçimde üretilmesini ve kuantum biliminin bazı gizemlerine ışık tutulmasını umuyor.
New South Wales Üniversitesi Kuantum Mühendisliği Scientia Profesörü Andrea Morello şunları söylüyor:
Bu keşif, çalışmak için hiçbir salınım yapan manyetik alana ihtiyaç duymadan, tek bir atomun spinlerini kullanan kuantum bilgisayarlar üretmek için artık bir yola sahip olduğumuz anlamına geliyor.
Dahası, bu çekirdekleri keskin hassasiyette elektrik ve manyetik alan sensörleri olarak ya da kuantum biliminin temel sorularına cevap vermek için de kullanabiliriz.
Şu anda, bu tür nükleer spinler, manyetik alanlar aracılığıyla kontrol ediliyor. Ancak araştırmacılara göre bunu elektrik alanlarla gerçekleştirmenin "geniş kapsamlı sonuçları" var. Manyetik alanlar, geniş bobinler ve yüksek elektrik akımları kullanılarak üretilmek zorunda ve bu durum kapladığı alanı arttırıyor. Elektrik alanlarını oluşturmak için gereken cihazlarsa çok daha küçük ve kontrollü.

Profesör Morello şöyle diyor:
"Nükleer Manyetik Rezonans modern fizik, kimya ve hatta tıp ve madencilikte en yaygın kullanılan tekniklerden birisidir. "Hekimler bir hastanın vücudunun içini çok ayrıntılı bir şekilde görmek için, madencilik şirketleriyse kaya örneklerini analiz ederken kullanıyor.
Bu işlerin hepsinde son derece iyi çalışıyor ancak bazı uygulamalarda atom çekirdeklerini saptamak ve kontrol etmek için manyetik alanlara ihtiyaç duymak dezavantajlı olabilir."
Profesör Morello, teknikler arasındaki farkın bir bilardo topuna istekayla vurmakla tüm masayı sallamak arasındaki farka benzediğini söylüyor ve ikincisinin de topu hareket ettireceğini ama geri kalan tüm topların konumunu karman çorman edeceğini ekliyor. Elektrik rezonansı topu tam istendiği yere itmek için kullanılabilir.
Bu teknik, başka bir araştırmacı tarafından ilk kez 1961'de öne sürülmüştü. Ancak araştırmacılar, pratikte göstermek çok zor olduğu için yarım yüzyıldan uzun bir süredir gözardı edilen bu tekniğe yanlışlıkla ulaştıklarını belirtiyor.
Independent Türkçe'de yer alan habere göre, artık araştırmacılar atomları kontrol etmenin bu yeni yöntemini bir takım farklı buluşlar için kullanabilmeyi umuyor.

Profesör Morello şunları ifade etti:
"Kilometre taşı olan bu sonuç, keşifler ve uygulamalarla dolu bir hazine sandığını açacak.
Yarattığımız sistem, her gün deneyimlediğimiz alışıldık dünyanın kuantum dünyasından nasıl oluştuğunu araştırmaya yetecek karmaşıklıkta. Dahası, bu kuantum karmaşıklığı, hassaslığı devasa ölçüde geliştirilmiş elektromanyetik alan sensörleri üretmekte kullanabiliriz. Ve bunların hepsi bir metal elektroda uygulanan küçük voltajlarla kontrol edilen silisyumdan yapılmış basit bir elektronik cihaz içinde!"



NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
TT

NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)

Anthony Cuthbertson Teknoloji Editör Yardımcısı @ADCuthbertson 

NASA, saatte 177 bin kilometreden daha hızlı bir şekilde galaksimizde ilerleyen, yıkıcı etkiler yaratma potansiyeline sahip bir "zombi yıldız"ı takip ediyor.

Son derece yoğun cisim, Samanyolu'nda bilinen 30 magnetarda biri. Magnetarlar, tamamen nötronlardan oluşan ölü yıldız kalıntılarını ifade ediyor.

Sadece 20 kilometre çapa sahip Magnetar SGR 0501+4516'nın Güneş'ten daha fazla kütlesi var ve manyetik alanı, Dünya'nın manyetosferinden yaklaşık 1 trilyon kat daha güçlü.

Magnetar, Hubble Uzay Teleskobu'nu kullanan araştırmacılar tarafından keşfedildi ve NASA bu "kaçak" cismi, "çizgi roman kahramanlarının süper güçlerine sahip" diye tanımlıyor.

NASA'nın Hubble Misyonu ekibi keşfi detaylandırdıkları blog yazısında, magnetarın evrenin bilinmeyen bir bölümünden geldiğini ancak evrenin en büyük gizemlerinden bazılarına ışık tutabileceğini belirtiyor.

Ekip, "Bir kişi magnetarın 600 mil (yaklaşık bin kilometre) yakınına gelse gökcismi, vücuttaki her atomu parçalayan, bilimkurgu filmlerinin meşhur ölüm ışınına dönüşür" diye yazıyor.

Bu kaçak magnetar, Samanyolu Galaksisi'ndeki örnekler arasında, başlangıçta tahmin edildiği gibi süpernova patlamasıyla oluşmama ihtimali en yüksek magnetar adayı. O kadar tuhaf ki hızlı radyo patlamaları diye bilinen olayların ardındaki mekanizmaya dair ipuçları bile sunabilir.

Görsel kaldırıldı.Magnetar adı verilen ultra güçlü manyetik alana sahip bir nötron yıldızının radyo dalgaları (kırmızı) yaymasının, bir sanatçı tarafından tasviri. Magnetarlar, hızlı radyo patlamalarını yaratan başlıca adaylar arasında yer alıyor (Bill Saxton/NRAO/AUI/NSF)


Gökbilimciler daha önce Magnetar SGR 0501+4516'nın komşu bir süpernovanın çekirdeğinin çökmesiyle oluştuğunu düşünüyordu ancak yeni gözlemler doğum yeri hakkında şüpheler uyandırdı.

Bu keşif magnetarın ya 20 bin diye bildirilen yaşından çok daha yaşlı olduğu ya da iki nötron yıldızının birleşmesiyle oluştuğu anlamına geliyor.

Keşfi yapan ekibe liderlik eden Ashley Chrimes, "Magnetarlar, tamamen nötronlardan oluşan nötron yıldızlarıdır (yıldızların ölü kalıntıları)" diyor.

Magnetarları benzersiz kılan şey, Dünya'daki en güçlü mıknatıslardan milyarlarca kat daha güçlü olan aşırı kuvvetli manyetik alanları.

İspanya'nın Barselona kentindeki Uzay Bilimleri Enstitüsü'nden Nanda Rea ise şöyle ekliyor:

Magnetarların doğum oranları ve oluşum senaryoları, yüksek enerji astrofiziğinde en acil sorular arasında yer alıyor. Bunların, gama ışını patlamaları, son derece parlak süpernovalar ve hızlı radyo patlamaları gibi evrenin en güçlü geçici olaylarının çoğu üzerinde etkisi var.

Araştırma ekibi, magnetarın Samanyolu'ndaki güzergahını ve kökenini daha iyi anlamak için gözlemlerine devam edecek.


 Independent Türkçe, independent.co.uk/space