Maddeyle anti-madde arasında değişen tuhaf parçacık, Büyük Patlama'nın gizemini artırıyor

Maddeyle anti-madde arasında değişen parçacık, uzmanları şaşırtıyor (NASA)
Maddeyle anti-madde arasında değişen parçacık, uzmanları şaşırtıyor (NASA)
TT

Maddeyle anti-madde arasında değişen tuhaf parçacık, Büyük Patlama'nın gizemini artırıyor

Maddeyle anti-madde arasında değişen parçacık, uzmanları şaşırtıyor (NASA)
Maddeyle anti-madde arasında değişen parçacık, uzmanları şaşırtıyor (NASA)

Bilim insanları atomaltı parçacıkların maddeyle anti-madde arasında hızla değişebildiğini keşfetti. 
Çığır açan bu keşif, tılsım mezonlarının izlenmesiyle yapıldı. Bir kuark (temel parçacıklar ve maddenin ana bloğu) ve bir anti-quark içeren atomaltı parçacıklara tılsım mezonu ismi veriliyor. 
Her parçacığın kütle, yaşam süresi ve dönüşü açısından kendisiyle aynı olan, ancak elektrik yükü de dahil olmak üzere zıt bir fiziksel yüke sahip anti-parçacığı vardır. Bir kuark kütlesi hadron olarak bilinen bileşik parçacıkları oluşturur. Hadronların en kararlı olanları atomlarda bulunan proton ve nötronlardır.
The Independent'ta yer alan habere göre, kuantum fiziğinde tıpkı ışığın hem dalga hem parçacık olarak hareket edebilmesi gibi bir tılsım mezonu da aynı anda hem parçacık hem de anti-parçacık olabilir. Bu durum kuantum süperpozisyonu olarak biliniyor ve daha hafif bir parçacık ve ağır bir parçacıkla sonuçlanıyor. Bilim insanları bu atomaltı parçacıkların kendi durumlarının bir karışımı olarak seyahat edebileceğini biliyordu. Şimdi ise tılsım mezonunun bu hafif ve ağır versiyonlar arasında salınabildiği keşfedildi.
Kütledeki bu fark inanılmaz derecede küçük: Sadece 0,000000000000000000000000000000000001 gram (veya 1x10-38g). Bu kadar hassas bir ölçüm, Büyük Hadron Çarpıştırıcısı kullanılarak yapılan deneylerdeki gibi ancak birçok gözlem sonucu mümkün oluyor.
Şimdiye kadar tılsım mezonu gibi davrandığı görülen tek parçacık, 2006'da bulunan garip-güzellik mezonu. Oxford Üniversitesi'nden Profesör Guy Wilkinson "Tılsım mezonu parçacığındaki bu salınımı bu kadar etkileyici yapan şey, güzellik mezonlarının aksine salınımın çok yavaş olması ve bu nedenle mezonun bozunması için gereken süre içinde ölçülmesinin son derece zor olmasıdır" dedi.

"Bu sonuç salınımların, parçacıkların büyük çoğunluğunun salınım şansı bulamadan bozunacağı kadar yavaş gerçekleştiğini gösteriyor. Fakat (Büyük Hadron Çarpıştırıcısı deneyi) bu kadar veri topladığı için bunu bir keşif olarak doğrulayabiliyoruz."

Sadece birkaç milimetre hareket eden iki protonun çarpışması bilim insanlarına parçacıktan anti-parçacığa geçişin hızını kontrol eden anahtar niceliği, yani kütle farkını ölçme fırsatı veriyor.
Bilim insanları şu anda salınım sürecinin kendisini anlamaya ve maddeyle anti-maddenin neden asimetrik olduğu gizemini çözmeye hevesli. Büyük Patlama'nın eşit miktarlarda madde ve anti-madde üretmiş olması gerekirdi fakat henüz anlaşılmayan nedenlerle bunun gerçekleşmediği açık. 
Zayıf, güçlü ve elektromanyetik kuvvetleri tanımlayan Standart Model'de henüz yer almayan, bilinmeyen parçacıkların bu tür geçişlere neden olması bunun sebebi olabilir. 
Standart Model yerçekimi dışında evrendeki 4 temel kuvvetten üçünü kapsıyor ve bilinen tüm temel parçacıkları sınıflandırması gerekiyor.
Nötr Tılsım-Mezon Özdurumları Arasındaki Kütle Farkının Gözlemlenmesi başlıklı çalışma henüz ön baskıda erişilebilir durumda ve Physical Review Letters dergisine gönderildi.



NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
TT

NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)

Anthony Cuthbertson Teknoloji Editör Yardımcısı @ADCuthbertson 

NASA, saatte 177 bin kilometreden daha hızlı bir şekilde galaksimizde ilerleyen, yıkıcı etkiler yaratma potansiyeline sahip bir "zombi yıldız"ı takip ediyor.

Son derece yoğun cisim, Samanyolu'nda bilinen 30 magnetarda biri. Magnetarlar, tamamen nötronlardan oluşan ölü yıldız kalıntılarını ifade ediyor.

Sadece 20 kilometre çapa sahip Magnetar SGR 0501+4516'nın Güneş'ten daha fazla kütlesi var ve manyetik alanı, Dünya'nın manyetosferinden yaklaşık 1 trilyon kat daha güçlü.

Magnetar, Hubble Uzay Teleskobu'nu kullanan araştırmacılar tarafından keşfedildi ve NASA bu "kaçak" cismi, "çizgi roman kahramanlarının süper güçlerine sahip" diye tanımlıyor.

NASA'nın Hubble Misyonu ekibi keşfi detaylandırdıkları blog yazısında, magnetarın evrenin bilinmeyen bir bölümünden geldiğini ancak evrenin en büyük gizemlerinden bazılarına ışık tutabileceğini belirtiyor.

Ekip, "Bir kişi magnetarın 600 mil (yaklaşık bin kilometre) yakınına gelse gökcismi, vücuttaki her atomu parçalayan, bilimkurgu filmlerinin meşhur ölüm ışınına dönüşür" diye yazıyor.

Bu kaçak magnetar, Samanyolu Galaksisi'ndeki örnekler arasında, başlangıçta tahmin edildiği gibi süpernova patlamasıyla oluşmama ihtimali en yüksek magnetar adayı. O kadar tuhaf ki hızlı radyo patlamaları diye bilinen olayların ardındaki mekanizmaya dair ipuçları bile sunabilir.

Görsel kaldırıldı.Magnetar adı verilen ultra güçlü manyetik alana sahip bir nötron yıldızının radyo dalgaları (kırmızı) yaymasının, bir sanatçı tarafından tasviri. Magnetarlar, hızlı radyo patlamalarını yaratan başlıca adaylar arasında yer alıyor (Bill Saxton/NRAO/AUI/NSF)


Gökbilimciler daha önce Magnetar SGR 0501+4516'nın komşu bir süpernovanın çekirdeğinin çökmesiyle oluştuğunu düşünüyordu ancak yeni gözlemler doğum yeri hakkında şüpheler uyandırdı.

Bu keşif magnetarın ya 20 bin diye bildirilen yaşından çok daha yaşlı olduğu ya da iki nötron yıldızının birleşmesiyle oluştuğu anlamına geliyor.

Keşfi yapan ekibe liderlik eden Ashley Chrimes, "Magnetarlar, tamamen nötronlardan oluşan nötron yıldızlarıdır (yıldızların ölü kalıntıları)" diyor.

Magnetarları benzersiz kılan şey, Dünya'daki en güçlü mıknatıslardan milyarlarca kat daha güçlü olan aşırı kuvvetli manyetik alanları.

İspanya'nın Barselona kentindeki Uzay Bilimleri Enstitüsü'nden Nanda Rea ise şöyle ekliyor:

Magnetarların doğum oranları ve oluşum senaryoları, yüksek enerji astrofiziğinde en acil sorular arasında yer alıyor. Bunların, gama ışını patlamaları, son derece parlak süpernovalar ve hızlı radyo patlamaları gibi evrenin en güçlü geçici olaylarının çoğu üzerinde etkisi var.

Araştırma ekibi, magnetarın Samanyolu'ndaki güzergahını ve kökenini daha iyi anlamak için gözlemlerine devam edecek.


 Independent Türkçe, independent.co.uk/space