"Açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde riskli seçimler yapıyor

Araştırmaya göre "açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde "riskli seçimler yapıyor" (Salk Enstitüsü)
Araştırmaya göre "açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde "riskli seçimler yapıyor" (Salk Enstitüsü)
TT

"Açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde riskli seçimler yapıyor

Araştırmaya göre "açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde "riskli seçimler yapıyor" (Salk Enstitüsü)
Araştırmaya göre "açlığı başına vuran" solucanlar yemek yemeleri gerektiğinde "riskli seçimler yapıyor" (Salk Enstitüsü)

Bilim insanları "aç ve öfkeli" olduğumuzda niçin mantıksız davranışlar sergilediğimizin nedenini bulmak için etraflıca bir araştırma yaptı.
Salk Enstitüsü'nden araştırmacılar, solucanları inceleyerek bağırsak hücrelerindeki proteinlerin dinamik hareketlerle açlık sinyallerini ilettiğini, bunun da solucanı gıda için zehirli engelleri aşmaya ittiğini keşfetti.
Bilim insanları bu bulgunun insanlar için de geçerli olabileceğine, böylece de yemek bulabilmek için neden zorlayıcı şeyler yapabileceğimizi açıklayacağına inanıyor.
Çalışmanın kıdemli yazarı Sreekanth Chalasani şunları söyledi:
"İster mütevazı bir solucan ister karmaşık bir insan olsun, tüm hayvanlar hayatta kalmak için kendilerini beslemekle ilgili seçimler yapar. Moleküllerin hücre altı hareketi bu seçimleri yönlendiriyor olabilir ve belki de bu tüm hayvan türleri için temeldir."
Ekip, açlığın nasıl davranış değişikliklerine yol açtığını anlamak için caenorhabditis elegans denen küçük solucanı model olarak kullandı.
PLOS Genetics akademik dergisinde yayımlanan çalışmada araştırmacılar, iyi bilinen bir solucan kovucu olan bakır sülfatı kullanarak aç solucanlarla yiyecekleri arasında engel oluşturdu.
İyi beslenenlere kıyasla iki ila üç saat boyunca yiyecekten mahrum bırakılan solucanlar, yiyeceğe ulaşmak için zehirli bariyeri geçmeye daha istekliydi.
Genetik araçlardan ve görüntüleme tekniklerden faydalanan araştırmacılar bu davranışın ardındaki moleküler mekanizmayı inceledi.
İyi beslenen solucanlarda transkripsiyon faktörleri (genleri "aktif" ve "pasif" hale getiren proteinler) bağırsak hücrelerinin sitoplazmasında yer alıyor.
Fakat aktifleşen transkripsiyon faktörleri çekirdeğe gidiyor.
Ancak MML-1 ve HLH-30 denen bu transkripsiyon faktörleri, aç solucanlarda yeniden sitoplazmaya geliyor.
Bilim insanları bu transkripsiyon faktörlerini yok ettiğinde aç solucanlar zehirli bariyeri geçmeye çalışmayı bıraktı. Bu da MML-1 ve HLH-30'un, açlığın hayvan davranışını değiştirmesini kontrol etmede kilit rol oynadığını gösteriyor.
Araştırmacılar, MML-1 ve HLH-30 hareket halindeyken bağırsaklarda insülin benzeri bir peptit olan ve INS-31 denen proteinin salgılandığını da ortaya çıkardı.
INS-31 peptitleri daha sonra nöronlar üzerindeki reseptörlere bağlanarak açlıkla ilgili bilgileri iletiyor ve riskli gıda arama davranışlarına neden oluyor.
Chalasani'nin laboratuvarında doktora sonrası araştırmacısı ve çalışmanın ortak baş yazarı Molly Matty, "C. elegans solucanları, düşündüğümüzden daha sofistike" dedi. Bağırsakları yiyecek eksikliğini sezip bunu beyne bildiriyor. Transkripsiyon faktörlerinin bu hareketlerinin, hayvanı yemeğe ulaşmak için nahoş bir engelden geçmek gibi risk-ödül kararları vermeye yönlendiren şey olduğunu düşünüyoruz.
Ekip, bu bulguların gelecekte insanlar gibi diğer hayvanların konfor yerine temel ihtiyaçlara nasıl öncelik verdiğiyle ilgili fikir sağlayabileceğine inanıyor.

 



Karanlık maddenin kökeni "Karanlık Büyük Patlama"da mı gizli?

Gizemli karanlık maddenin evrendeki maddenin yüzde 85'ini oluşturduğu öne sürülüyor (Pexels)
Gizemli karanlık maddenin evrendeki maddenin yüzde 85'ini oluşturduğu öne sürülüyor (Pexels)
TT

Karanlık maddenin kökeni "Karanlık Büyük Patlama"da mı gizli?

Gizemli karanlık maddenin evrendeki maddenin yüzde 85'ini oluşturduğu öne sürülüyor (Pexels)
Gizemli karanlık maddenin evrendeki maddenin yüzde 85'ini oluşturduğu öne sürülüyor (Pexels)

Bilim insanları karanlık maddenin diğer maddelerden sonra, "Karanlık Büyük Patlama" denen bir olayla ortaya çıktığını öne sürdü. 

Standart kozmolojik modele göre 13,8 milyar yıl önce gerçekleşen Büyük Patlama'yla evren bir saniyeden kısa sürede muazzam bir hızla genişledi.

Bu dönemde sıcak plazmayla dolu evrende, karanlık madde de dahil her şeyin, bu plazmanın soğumaya başlamasıyla meydana geldiği düşünülüyor.

Evrenin yüzde 27'sini oluşturduğu öne sürülen karanlık madde, ışıkla etkileşime girmediği için gözlemlenemiyor. 

Var olduğu düşüncesiyse, yarattığı kütleçekim etkisinin normal veya gözlemlenebilen madde üzerindeki etkisine dayanıyor.

Bilim insanları yaklaşık 100 yıldır bu maddenin varlığını doğrulayacak kanıtlar ararken, bazıları da gerçek olmadığını savunuyor. 

Physical Review D adlı hakemli dergide yayımlanan yeni bir makalenin yazarları, bu gizemli maddenin kökenini sorgulamaya açıyor.

Geçen yıl yine aynı bilimsel dergide çıkan bir makalede, karanlık maddenin Büyük Patlama'dan birkaç ay sonra gerçekleşen başka bir patlamayla ortaya çıkmış olabileceği iddia edilmişti. 

Austin Teksas Üniversitesi'nden Katherine Freese ve Martin Winkler, Karanlık Büyük Patlama adını verdikleri bu olayla sıcak ve karanlık plazma patlaması yaşandığını savunuyor. Tıpkı Büyük Patlama'nın normal maddeyi ortaya çıkarması gibi, bu olayın da karanlık maddeyi yarattığı düşünülüyor.

ABD'deki Colgate Üniversitesi'nden Cosmin Ilie ve Richard Casey'nin yeni çalışmasıysa, bu teoriyi destekleyerek karanlık maddeyi saptamaya yönelik yöntemler öneriyor.

Araştırmacılar, mevcut deneysel verilere dayanarak Karanlık Büyük Patlama modelinin geçerli olabileceği senaryoları inceledi. 

Karanlık maddenin kökenine dair yeni ihtimalleri ele alan ekip, bırakmış olabileceği kütleçekimsel dalgaların izini sürerek Karanlık Büyük Patlama teorisinin test edilebileceğini söylüyor. 

Ilie, "Karanlık Büyük Patlama tarafından üretilen kütleçekim dalgalarını tespit etmek, bu yeni karanlık madde teorisine çok önemli kanıtlar sağlayabilir" diyor: 

Uluslararası Pulsar Zamanlama Dizisi (IPTA) ve Kilometre Karelik Dizi (SKA) gibi deneyler ufukta belirmişken, yakında bu modeli daha önce görülmemiş şekillerde test edecek araçlara sahip olabiliriz.

Geçen yıl IPTA bünyesindeki bir araştırma ekibi, Büyük Patlama'dan kısa süre sonra meydana gelmeye başlayan kütleçekimsel dalgalarının sönük yankısı olan kütleçekimsel dalga arka planını ilk kez saptanmıştı.

Bu ve benzeri keşifler, karanlık madde teorilerini test etmenin yanı sıra evrenin ilk dönemindeki gelişiminin daha iyi anlaşılmasına da katkı sunma potansiyeli taşıyor.

Independent Türkçe, Science Alert, Phys.org, Popular Mechanics, Physical Review D