Bazı İlaçların ‘Ayna Görüntüsü’ kimyasal yapıları zararlı olabilir

Bazı İlaçların ‘Ayna Görüntüsü’ kimyasal yapıları zararlı olabilir
TT

Bazı İlaçların ‘Ayna Görüntüsü’ kimyasal yapıları zararlı olabilir

Bazı İlaçların ‘Ayna Görüntüsü’ kimyasal yapıları zararlı olabilir

Herhangi bir ilacın veya kimyasal bileşiğin vücut üzerindeki etkileri, atomlarının uzayda nasıl düzenlendiğine bağlı. Bazı bileşiklerin aynı moleküler formüle sahip ancak farklı 3 boyutlu yapıya sahip karanlık ikizi vardır. Bunun vücutta yaptıkları veya yapmadıklarıyla ilgili sonuçları olabilir. Bazı İlaçların ‘Ayna Görüntüsü’ Kimyasal Yapıları vardır. Bu nedenle yanlış ilaçlar zararlı olabilir.
Binlerce doğum kusuruna ve düşüklere neden olan sabah bulantısı ilacı olan thalidomide’nin trajik hikayesini düşünün. Thalidomide bir formunun veya izomeri yatıştırıcı etkiye sahipken, diğerinin anormal fizyolojik gelişime neden olduğu düşünülüyor.
Güney Carolina Üniversitesi'nde ilaç keşfi ve biyomedikal bilimler doçenti Sajish Mathew liderliğinde yapılan yeni araştırma, kırmızı üzüm ve yer fıstığında bulunan böyle bir bileşiğe, resveratrol'e odaklandı. Alzheimer hastalığını tedavi etmek için resveratrol kullanımına ilişkin klinik denemelerin neden tutarsız sonuçlar verdiği bilimsel bir gizem olmuştur.
Sebebin iki farklı formun kullanılmasından kaynaklanabileceği ortaya çıktı. The Conversation'dan alıntı yapan Science Alert web sitesine göre, biri biliş ve hafızaya yardımcı olurken, diğeri sinir sistemi için toksik olabilir.

İzomerler ve amino asitler
Birçok ilaç aynı atomlara ve bağlara sahip. Ancak uzayda farklı şekilde düzenlenir. Bu ilaçlara kiral bileşikler denir. Yani üst üste bindirilemez iki ayna görüntüsü olarak var olurlar. Örneğin, elleriniz birbirinin üst üste bindirilemez ayna görüntüleridir. Aynı gibi görünseler de üst üste koyduğunuzda örtüşmüyorlar.
Bu aynalar genellikle çok benzer özelliklere sahip. Çünkü aynı elementleri ve bağlantıları paylaşırlar. Ancak uzayda düzenlenme biçimleri vücuttaki etkilerini büyük ölçüde değiştirebilir. Tıpkı Sağ elinize bir solak eldiveni sığdıramayacağınız gibi, bir ilacın solak versiyonu da vücuttaki bir sağ el molekülüne uyacak şekilde bir hedefe sığamayacaktır. Kiral moleküller, optik aktiviteleri ile tanımlanan iki versiyonda veya izomerlerde gelir. Bir kiral molekül üzerine polarize ışık tutarsanız, birinin ışığı sola (L- öneki veya levorotatory ile gösterilir) döndürürken, diğerinin onu sağa döndüreceği (D öneki veya dekstrorotatory ile gösterilir) anlamına gelir.
Proteinlerin yapı taşları olan amino asitler kiral moleküllerdir. Canlı organizmalar öncelikle L konfigürasyonlu amino asitlerden proteinler üretirler. Bununla birlikte, D konfigürasyonunun doğada birçok başka işlevi vardır.
Örneğin bakteriler, hücre duvarlarını yapmak için D konfigürasyonlu amino asitleri kullanır. Memeliler, sinir ve endokrin sistemlerinde haberciler olarak D konfigürasyonlu amino asitleri kullanırlar.
Amino asit tirozin, L oluşum kuralının önemli bir istisnasıdır. Diğer amino asitlerin aksine, tirozinin hem L hem de D konformasyonları, tirozil-tRNA sentetaz (TyrRS) adı verilen bir enzim tarafından protein sentezi için aktive edilebilir.
D-tirozinin varlığı, hücrelerin sadece L-tirozin kullanan proteinler sentezlemesini zorlaştırabilir. Bununla birlikte, hücreler, her iki versiyon arasında ayrım yapabilen ve sadece L-tirozinin kullanılmasını sağlayan enzimler geliştirmiştir.
Tirozin tüketen enzimler olmadığında, vücutta artan tirozin seviyeleri, sinir sistemine zarar da dahil olmak üzere toksik etkilere sahip olabilir. Son zamanlarda yayınlanan çalışma, çok fazla tirozinin nörotoksik olmasının olası bir nedenini öne sürüyor. Bir petri kabındaki sıçan beyin hücrelerine artan miktarlarda L-tirozin eklediğimizde, vücuda zarar vermeden protein yapmak için tirozini aktive eden enzim olan TyrRS düzeylerini düşürdüğünü bulduk.
Şaşırtıcı bir şekilde, D-tirozin eklemek sadece TyrRS seviyelerinin düşmesine neden olmakla kalmadı, aynı zamanda nöronları da öldürdü.
Artmış tirozin seviyeleri gösteren Alzheimer hastalarının beyinlerine baktığımızda, TyrRS enzim seviyelerinin de tükendiğini gördük. Hipotezimiz, beyindeki tirozin seviyeleri arttıkça TyrRS enzim seviyelerinin düştüğü ve Alzheimer hastalığı olan kişilerin beyinlerinde zararlı etkilere neden olduğu yönündedir.
Bu bulgular, TyrRS'nin biliş ve hafıza için gerekli olan proteinlerin sentezinde oynayabileceği potansiyel olarak önemli rolü göstermekte.
Bu bulguların resveratrol (araştırmacıların potansiyel sağlık yararları için inceledikleri kırmızı şarapta bulunan bir bileşik) çalışmaları için etkileri vardır. Bazı klinik deneyler, resveratrolün Alzheimer hastalığı olan kişilerde bilişsel işlevi iyileştirebileceğini bulmuş olsa da, diğerleri bunun tam tersi bir etkiye sahip olduğunu ve hastalığı daha şiddetli hale getirdiğini buldu.
Resveratrol, cis-resveratrol ve trans-resveratrol olmak üzere iki şekilde gelir. L- ve D- gibi "cis-" ve "trans-" önekleri, iki izomerdeki aynı atomların uzayda nasıl farklı şekilde düzenlendiğini açıklar.
Çalışmada araştırmacılar, resveratrolün iki formunun TyrRS'ye farklı şekillerde bağlandığı için nöronlarda zıt etkilere yol açabileceğini buldu.
Cis-resveratrol, bir petri kabındaki sıçan nöronlarındaki TyrRS seviyelerini arttırabilirken, yüksek konsantrasyonlarda trans-resveratrol TyrRS'yi tüketti ve sinir hasarına neden oldu. Bununla birlikte, düşük konsantrasyonlarda trans-resveratrol vücutta cis-resveratrol'e dönüşebilir. Bu sonuç, TyrRS seviyelerinde ve bununla ilişkili faydalarda bir artışa yol açar.
Tek başına resveratrol cis test edilmediğinden, birçok klinik resveratrol denemesinin başarısız olduğunu varsayıyoruz. Bunun, yüksek dozlarda trans-resveratrol kullanan denemelerin neden yan etkiler gösterdiğini, düşük dozlarda trans-resveratrol kullanan ve daha sonra resveratrol'e dönüştürülen denemelerin yararlı etkiler için vücutta bağımsız bir ilişki gördüğünü açıklayabileceğine inanıyoruz.
Sonuç olarak, bir ilacın aldığı farklı biçimlere dikkat etmek, daha etkili tedavilere yardımcı olabilir.



Mavi köpekbalıklarının bukalemun gibi renk değiştirdiği keşfedildi

Fotoğraf: Wikimedia Commons
Fotoğraf: Wikimedia Commons
TT

Mavi köpekbalıklarının bukalemun gibi renk değiştirdiği keşfedildi

Fotoğraf: Wikimedia Commons
Fotoğraf: Wikimedia Commons

Yeni bir araştırmaya göre mavi köpekbalığının derisindeki benzersiz yapılar, bukalemun gibi renk değiştirebileceğine işaret ediyor.

Bu hafta Anvers'te düzenlenen Society for Experimental Biology konferansında sunulan çalışma, mavi köpekbalığının (Prionace glauca) derisindeki renkleri üreten küçük nano yapıları ortaya çıkardı. Köpekbalığının renginin sırrı, deriyi zırh gibi kaplayan pulların, dermal dentiküller diye bilinen pulpa boşluklarında saklı.

Çalışmada yer alan araştırmacılardan Viktoriia Kamska, "Mavi, hayvanlar alemindeki en nadir renklerden biri ve hayvanlar bunu üretmek için evrim boyunca çeşit çeşit benzersiz strateji geliştirdi. Bu da bu süreçleri bilhassa büyüleyici kılıyor" diyor.

Pulpa boşlukları içindeki guanin molekülü kristalleri, mavi reflektör görevi görüyor. Buna ek olarak melanin pigmenti içeren hücre bileşenleri diğer dalga boylarını emerek köpekbalığının karakteristik rengini üretiyor.

Dr. Kamska, "Bu bileşenler, aynalarla dolu torbaları ve siyah emicilerle dolu torbaları anımsatan şekilde ayrı hücrelerde toplanıyor ancak yakın ilişki içinde durarak birlikte çalışabiliyorlar" diye açıklıyor.

Melanin, belirli kalınlık ve aralıklara sahip guanin kristalleriyle işbirliği yaparak köpekbalığının derisindeki renk doygunluğunu artırıyor.

Bir diğer araştırmacı Mason Dean "Bu malzemeler bir araya getirilince, renk üretme ve değiştirmeyi sağlayan güçlü bir yetenek de ortaya çıkıyor" diyor.

Büyüleyici olan şey, kristalleri içeren hücrelerdeki küçük değişiklikleri gözlemleyerek bunların tüm organizmanın rengini nasıl etkilediğini görüp modelleyebilmemiz.

xsdfrgt
Mavi köpekbalığının dermal dentikülleri (Viktoriia Kamska)

Araştırma, renk üreten küçük yapıların biçimini, işlevini ve mimarisini tanımlayan gelişmiş görüntüleme teknikleri sayesinde mümkün oldu.

Dr. Dean "Rengi organizma düzeyinde, metre ve santimetre ölçeğinde incelemeye başladık ancak yapısal renk nanometre düzeyinde elde edildiğinden, bir dizi farklı yaklaşım kullanmamız gerekti" diyor.

Araştırmacılar daha sonra küçük deri yapılarındaki hangi yapısal parametrelerin, gözlemlenen görünümü üretmekten sorumlu olduğunu doğrulamak için bilgisayar simülasyonları kullandı.

Bu renk değişimi mekanizmasının, guanin kristal aralığını etkileyecek çevresel faktörler tarafından da yönlendirilebileceğini gösterdiler.

Dr. Dean, "Bu şekilde nem veya su basıncı değişiklikleri gibi basit bir şeyden kaynaklanan çok ince ölçekteki değişiklikler, vücut rengini değiştirebilir ve bu da hayvanın nasıl kamufle olacağını şekillendirir" ifadelerini kullanıyor.

Örneğin köpekbalığı daha derine yüzdüğünde, deriye daha fazla basınç uygulanması sonucu guanin kristallleri birbirine doğru itiliyor ve köpekbalığının rengi koyulaşarak çevresine daha iyi uyum sağlıyor.

Bu küçük yapıların davranış mekanizması köpekbalığının deri rengini de değiştiriyor olabilir. Dr. Dean şöyle diyor: 

Böylesine çok işlevli bir yapısal tasarım (yüksek hızlı hidrodinamik ve kamufle edici optik özellikleri birleştiren bir deniz canlısı yüzeyi) bildiğimiz kadarıyla daha önce görülmedi.

Independent Türkçe