NASA'nın fonladığı yeni lazer uzaylıları bulmak için kullanılacak

Unsplash
Unsplash
TT

NASA'nın fonladığı yeni lazer uzaylıları bulmak için kullanılacak

Unsplash
Unsplash

NASA'nın finanse ettiği yeni bir lazer, bilim insanlarının uzaylı yaşamı bulmasını sağlayabilir.
Araştırmacılar lazeri yaşam belirtilerini saptamak ve diğer gezegenlerden alınan materyalleri tanımlamak için inşa etti.
Fakat aynı zamanda, sınırlı kaynaklara sahip uzay araçlarında diğer gezegenlere götürülebilecek kadar küçük ve hafif hale getirmek zorunda kaldılar.
Bunu yapmak adına, başlangıçta ticari kullanım için inşa edilmiş ve dünyanın dört bir yanındaki laboratuvarlarda bulunabilen bir sistemi küçülttüler. Bilim insanları 8 yıl boyunca, söz konusu sistemin uzaya götürülebilecek bir versiyonunu inşa etti.
Ortaya çıkan sistem sadece 7,71 kilogram ağırlığında ve diğer gezegenleri incelemek için kullanılabilecek iki aracın birleşimi. Biri, bir numuneden az miktarda materyal alabilen bir ultraviyole lazer ve diğeri, bu materyalin kimyasını inceleyebilen, "Orbitrap" adıyla bilinen bir çözümleyici.
The Independent'ta yer alan habere göre, makalenin baş yazarı ve Maryland Üniversitesi'nden jeoloji doçenti Ricardo Arevalo, bir açıklamada "Orbitrap başlangıçta ticari kullanım için inşa edildi" diyor.

"Onları ilaç, tıp ve proteomik endüstrilerinin laboratuvarlarında bulabilirsiniz. Kendi laboratuvarımdaki 181 kilogramın biraz altında, bu yüzden epey büyükler ve uzayda verimli bir şekilde kullanılabilecek bir prototip yapmak 8 yılımızı aldı. Yeni prototip önemli ölçüde daha küçük ve daha az kaynak gerektiriyor ama yine de son teknoloji özelliklere sahip."

Yaratıcıları, küçültülmüş versiyonun bir uzay görevinde taşınacak boyutta olması gerektiğini ve güç kaynaklarının pillerinden gereksiz bir enerji ihtiyacı duymaması için çok az enerji kullandığını söylüyor. Bu aynı zamanda materyali analiz etmenin daha kullanışlı bir yolu, dolayısıyla numunelerin kirlenme olasılığı daha düşük olacak.

"Bir lazer kaynağının iyi yanı, iyonlaştırılabilecek her şeyin analiz edilebilmesi. Lazer ışınımızı bir buz numunesine yönlendirirsek, buzun bileşimini karakterize edebilmemiz ve içindeki biyo imzaları görebilmemiz gerekir. Bu araç öyle yüksek bir kütle çözünürlüğüne ve isabet oranına sahip ki, bir numunedeki herhangi bir moleküler veya kimyasal yapıyı çok daha tanımlanabilir kılıyor."

Bilim insanları ayrıca yeni sistemin kullanımının, uzaylı yaşamının daha kesin işaretleri olabilecek, daha büyük ve karmaşık bileşikler bulmalarını sağlayacağını umuyor. Mevcut sistemler amino asitler gibi daha küçük bileşikleri tespit edebildi ancak bunlar, diğer gezegenlerdeki yaşamın daha muğlak kanıtları.
Profesör Arevalo, "Amino asitler abiyotik olarak üretilebilir, yani yaşamın kesin kanıtı değildirler. Birçoğu amino asitlerle dolu olan meteoritler, bir gezegenin yüzeyine çarpabilir ve abiyotik organik maddeleri yüzeye ulaştırabilir" diyor.

"Artık proteinler gibi daha büyük ve daha karmaşık moleküllerin, canlı sistemler tarafından yaratılmış veya bunlarla ilişkili olma ihtimalinin daha yüksek olduğunu biliyoruz. Bu lazer, daha küçük ve basit bileşiklerden daha yüksek doğrulukta biyo imzaları yansıtabilen, daha büyük ve daha karmaşık organik maddeleri incelememize olanak sağlıyor."

Çalışmayı açıklayan "Laser Desorption Mass Spectrometry with an Orbitrap Analyzer for in situ Astrobiology" (Yerinde Astrobiyolojik Araştırmalar için Orbitrap Çözümleyicili Lazer Desorpsiyon Kütle Spektrometrisi) adlı makale Nature Astronomy'de yayımlandı.



İkiye bölünse bile çalışmaya devam eden batarya üretildi

Esnek bataryanın kesilmesine rağmen çalışması dayanıklılıkta yeni bir adıma işaret ediyor (ACS Energy Letters)
Esnek bataryanın kesilmesine rağmen çalışması dayanıklılıkta yeni bir adıma işaret ediyor (ACS Energy Letters)
TT

İkiye bölünse bile çalışmaya devam eden batarya üretildi

Esnek bataryanın kesilmesine rağmen çalışması dayanıklılıkta yeni bir adıma işaret ediyor (ACS Energy Letters)
Esnek bataryanın kesilmesine rağmen çalışması dayanıklılıkta yeni bir adıma işaret ediyor (ACS Energy Letters)

İkiye katlansa veya bölünse bile çalışmaya devam eden batarya geliştirildi. 

Lityum iyon bataryalar, akıllı telefonlardan elektrikli araçlara kadar pek çok alanda kullanılıyor. Ancak alev almaya yatkın olmaları nedeniyle bilim insanları farklı seçenekleri araştırıyor. 

Bu çalışmalarda öne çıkan seçeneklerden biri de lityum sülfür bataryalar. Daha güvenli olması beklenen bu cihazlar ayrıca yüksek enerji yoğunluğu sunma ve ucuza mal edilme potansiyeliyle de öne çıkıyor.

Ancak lityum sülfür bataryalar, bütün bu artılarına rağmen uzun ömürlü değil. Bu bataryaları yüksek sıcaklıkta kararlı halde tutmak için karbonat bazlı elektrolit kullanılması öneriliyor.

Fakat katottaki sülfür, elektrolit içinde çözünmeye devam ederek katı bir çökelti oluşturuyor ve bataryanın kapasitesini düşürüyor. 

Çin Elektronik Bilimi ve Teknolojisi Üniversitesi'nden araştırmacılar, katot ve elektrolit arasına bir katman daha koymanın bu sorunu çözeceğinden yola çıkarak farklı maddelerle deneyler yürüttü. 

Bulgularını hakemli dergi ACS Energy Letters'ta 13 Eylül'de yayımlayan ekip, poliakrilik asidin sülfür-demir batarya katotlarında en iyi sonucu veren kaplama olduğunu saptadı.

Araştırmacılar bu kaplamayla hem esnek ve düz bir batarya olan kese pil hem de düğme pil prototipi üretti. 

Kese pil, 100 şarj-deşarj döngüsü boyunca herhangi bir bozulma belirtisi olmadan çalıştı. Ayrıca batarya ikiye katlandığında veya kesildiğinde de güç sağlamaya devam etti.

Çalışmaya liderlik eden Liping Wang, Interesting Engineering'e yaptığı açıklamada "Batarya, benzersiz tasarımı sayesinde kesildikten sonra da çalışmaya devam ediyor; iletken ağ fiziksel hasardan sonra bile sağlam kalıyor" diyerek ekliyor:

Bu muhtemelen mekanik kopmaya rağmen iyon ve elektron akışına izin veren sağlam ve esnek bir bağlayıcı sistem ya da yapısal tasarımdan kaynaklanıyor. İletken yollar, kesilme sırasında tamamen koparılmadığı için devre işlemeye devam ediyor.

Düğme pil ise 300 şarj-deşarj döngüsünün ardından kapasitesinin yüzde 72'sini korumayı başardı. 

Daha sonra kaplamayı diğer metallerden yapılmış katotlarda test eden ekip, lityum molibden ve lityum vanadyum batarya üretti. Bu piller de 300 şarj-deşarj döngüsü boyunca kapasitesini korudu.

Bulgular, sadece lityum sülfür bataryaların değil başka türden metallerle yapılanların da kaplamayla uzun ömürlü ve güvenli hale getirilebileceğine işaret ediyor.

Independent Türkçe, Interesting Engineering, Cosmos Magazine, EurekAlert, ACS Energy Letters