James Webb Uzay Teleskobu, ortadan kaybolan devasa yıldızın gizemini çözdü

Bilim insanları bu kozmik varlığın yorumunun halihazırda belirsizliğini koruduğunu söylüyor

(NASA/ESA/P. Jeffries)
(NASA/ESA/P. Jeffries)
TT

James Webb Uzay Teleskobu, ortadan kaybolan devasa yıldızın gizemini çözdü

(NASA/ESA/P. Jeffries)
(NASA/ESA/P. Jeffries)

James Webb Uzay Teleskobu, Güneş'ten yaklaşık 25 kat daha büyük dev bir yıldızın anlaşıldığı üzere ortadan kaybolduğu 2009'daki tuhaf gözlemin aydınlatılmasını sağladı.

2009'da gökbilimciler Güneş'ten yaklaşık 25 kat daha büyük olduğunu düşündükleri dev bir yıldızın patlayarak süpernovaya dönüşmek üzereymiş gibi Güneş'in bir milyon katı parlaklığa ulaştığını ama sonra patlamak yerine aniden söndüğünü gözlemlemişti.

Ancak daha sonra Hubble ve Spitzer uzay teleskoplarının yanı sıra Büyük Binoküler Teleskop (LBT) kullanılarak yapılan gözlemler, artık başarısız bir süpernova olarak kabul edilen N6946-BH1 yıldızını tespit edemedi.

Gökbilimciler 22 milyon ışık yılı uzaklıktaki yıldızın süpernovayı tetiklemek yerine çökerek kara deliğe dönüşmüş olabileceğinden şüpheleniyordu.

Yıldızların genellikle ancak süpernova (SN) geçirdikten sonra kara delik oluşturduğu düşünülse de N6946-BH1'e dair gözlem, yıldızların süpernova geçiremese de kara delik oluşturabileceğine işaret ediyordu.

Bilim insanları şöyle diyordu: 

N6946-BH1, başarısız süpernovanın (SN) ilk makul adayı. Bu tuhaf olayda büyük kütleli bir yıldız beklenen parlak SN olmadan kaybolurken buna, çökerek kara deliğe (BH) dönüşmesi eşlik etti.

Araştırmacılar bu gözlemin, en büyük kütleli yıldızların süpernovalarını neden görmediğimizi açıklamaya katkı sağlayabileceğinden şüpheleniyordu.

Öte yandan arXiv sunucusunda ön baskı olarak yayımlanan makalede açıklandığı üzere Webb teleskobundaki araçlar kullanılarak yapılan yeni gözlemler, muhtemelen asıl yıldızı çevreleyen toz kabuğu kalıntısından gelen parlak bir kızılötesi kaynağa işaret ediyor.

Bunun yıldızdan fırlatılan maddelerden kaynaklanabileceği gibi, araştırmacılar bu gözlemin bir kara deliğe düşen maddelerden de kaynaklanabileceğini söylüyor.

Henüz hakem denetiminden geçmeyen araştırmada yıldızın konumunda bir değil, üç kalıntı nesne olduğu için başarısız süpernova modelinin zayıf bir ihtimal olduğu bildiriliyor.

Araştırmacılar artık 2009'da gözlemlenen parlamaya büyük olasılıkla iki yıldızın birleşmesinin yol açtığından şüpheleniyor.

Bilim insanları, daha sonra sönen parlamanın iki yıldızın birleşmesinden kaynaklanmış olabileceğini söylüyor.

Araştırmacılar başarısız süpernova modelinin henüz tamamen elenemeyeceğini belirtiyor.

Bilim insanları çalışmada şöyle yazdı:

Halihazırda N6946-BH1'in yorumu belirsizliğini koruyor. Gözlemler, yıldız birleşmesinden beklenenlere uyuyor fakat başarısız SN hipotezindeki teorik belirsizlik bunun reddedilmesini zorlaştırıyor.

Öte yandan bulgular, Webb teleskobunun milyonlarca ışık yılı uzaklıktaki çeşitli kaynakları saptama potansiyeline işaret ediyor.

Independent Türkçe 



Her şeyin nasıl başladığını ortaya çıkarabilecek bir sinyal belirlendi

(Hans Lucas/AFP)
(Hans Lucas/AFP)
TT

Her şeyin nasıl başladığını ortaya çıkarabilecek bir sinyal belirlendi

(Hans Lucas/AFP)
(Hans Lucas/AFP)

Andrew Griffin 

Evrenin erken dönemlerinden gelen bir radyo sinyali, çevremizdeki her şeyin nasıl başladığını anlamamızı sağlayabilir.

21 santimetre sinyali diye bilinen bu sinyal, ilk yıldızların ve galaksilerin nasıl yanmaya başladığını ve evreni karanlıktan ışığa nasıl çıkardığını nihayet anlamamızı mümkün kılabilir.

Cambridge Üniversitesi'nden makalenin ortak yazarı Anastasia Fialkov yaptığı açıklamada, "Bu, karanlık evrendeki ilk ışığın nasıl ortaya çıktığını öğrenmek için eşsiz bir fırsat" diyor. 

Soğuk, karanlık bir evrenden yıldızlarla dolu bir evrene geçiş hikayesini yeni yeni anlamaya başlıyoruz.

Sinyal, 13 milyar yıldan fazla bir süre önceden, Büyük Patlama'nın sadece 100 milyon yıl sonrasından bize ulaşıyor. Zayıf parıltı, yıldızların oluştuğu uzay bölgeleri arasındaki boşluğu dolduran hidrojen atomları tarafından yaratılıyor.

Bilim insanları artık bu sinyalin doğasını kullanarak erken evreni daha iyi anlayabileceklerine inanıyor. Bunu, evrenin başlangıcıyla ilgili verileri ortaya çıkarmak için radyo sinyallerini yakalamaya çalışacak REACH (Radio Experiment for the Analysis of Cosmic Hydrogen / Kozmik Hidrojen Analizi için Radyo Deneyi) adlı radyo anteniyle yapacaklar.

Araştırmacılar bu projenin nasıl işleyeceğini daha iyi anlamak için REACH ve Kilometre Kare Dizisi adlı başka bir projenin, ilk yıldızların kütleleri ve diğer ayrıntıları hakkında nasıl bilgi sağlayabileceğini öngören bir model oluşturdu.

Profesör Fialkov, "İlk yıldızların kütlelerinin 21 santimetre sinyaline bağımlılığını ve ilk yıldızlar öldüğünde üretilen, X ışını ikililerinden gelen ultraviyole yıldız ışığı ve X ışını emisyonlarının etkisi de dahil olmak üzere tutarlı bir şekilde modelleyen ilk grubuz" diyor.

Bu bilgiler, Büyük Patlama'nın ürettiği hidrojen-helyum bileşimi gibi, evrenin ilkel koşullarını birleştiren simülasyonlardan elde edildi.

REACH teleskobunun baş araştırmacısı ve çalışmanın ortak yazarı Eloy de Lera Acedo, "Bildirdiğimiz tahminler, evrendeki ilk yıldızların doğasını anlamamız açısından muazzam önem taşıyor" ifadelerini kullanıyor.

Radyo teleskoplarımızın, ilk yıldızların kütlesi ve ilk ışıkların bugünkü yıldızlardan ne kadar farklı olabileceği hakkında ayrıntılı bilgiler verebileceğine dair kanıt sunuyoruz.

REACH gibi radyo teleskopları, evrenin bebeklik döneminin gizemlerini çözme yolunda umut vaat ediyor ve bu tahminler, Güney Afrika'daki Karoo'dan yaptığımız radyo gözlemlerine rehberlik etmesi açısından hayati önemde.

Çalışma, hakemli dergi Nature Astronomy'de yayımlanan "Determination of the mass distribution of the first stars from the 21-cm signal" (21 santimetre sinyalinden ilk yıldızların kütle dağılımının belirlenmesi) başlıklı yeni bir makalede anlatılıyor.

 Independent Türkçe, independent.co.uk/space