Bilinen evrendeki her şeyin grafiği çıkarıldı: Bir kara deliğin içinde mi yaşıyoruz?

"Tüm nesnelerin nereden geldiğini anlama amacıyla yola çıktık"

Çalışma, evrenle ilgili imkansız gibi görünen, önemli soruları gündeme getirdi (NASA)
Çalışma, evrenle ilgili imkansız gibi görünen, önemli soruları gündeme getirdi (NASA)
TT

Bilinen evrendeki her şeyin grafiği çıkarıldı: Bir kara deliğin içinde mi yaşıyoruz?

Çalışma, evrenle ilgili imkansız gibi görünen, önemli soruları gündeme getirdi (NASA)
Çalışma, evrenle ilgili imkansız gibi görünen, önemli soruları gündeme getirdi (NASA)

Avustralya Ulusal Üniversitesi'nden astrofizikçiler, evrenin geçmişine ve evren genişleyerek soğudukça arka planda yoğunlaşan nesnelere (örneğin protonlar, gezegenler ve galaksiler) genel bir bakış açısı sunan grafikler hazırladı.

"Tüm nesnelerin grafikleri" diye nitelenen bu çalışma, aynı zamanda Güneş Sistemi ve dolayısıyla Dünya'nın da içinde yer aldığı bilinen evrenin bir kara delik olabileceği fikrini akla getiriyor.

Hakemli bilimsel dergi American Journal of Physics'te yayımlanan çalışmanın başyazarı Dr. Charley Lineweaver, "Evrendeki tüm nesnelerin nereden geldiğini anlama amacıyla yola çıktık" dedi.

13,8 milyar yıl önce evreni var ettiği varsayılan Büyük Patlama sırasında protonlar, atomlar, yıldızlar, galaksiler, gezegenler ve dolayısıyla insanlar yoktu. Ancak Lineweaver artık evrenin bu türden nesnelerde dolu olduğunu belirtiyor.

Bilim insanı, "Nereden geldiklerine dair nispeten basit bir cevap var: Evren soğudukça tüm bu nesneler, sıcak bir arka plan üzerinde yoğunlaştı" diye ekledi.

Lineweaver ve ekibi bu yoğunlaşma sürecini mümkün olan en basit şekilde açıklamak için iki grafik hazırladı.

İlki evrenin genişledikçe ve soğudukça ısısının ve yoğunluğunun ne hale geldiğini gösteriyor. İkincisiyse evrendeki tüm nesnelerin kütlesini ve boyutunu içeriyor.

Ekibe göre bu grafikler, gözlemlenebilir evrendeki tüm nesnelerin şimdiye kadar oluşturulmuş en kapsamlı tablosu.

Ekip aynı zamanda, bir kara deliğin kütlesi ne kadar büyükse yoğunluğunun da o kadar düşük olacağını vurguluyor.

Üstelik bu grafiklerden yola çıkarak yapılan hesaplamalara göre bir kara delik, bilinen evren kadar büyük olsaydı, evrenle aynı yoğunluğa sahip olurdu.

Bu da aslında içinde yaşadığımız bilinen evrenin bir kara delik olmasının teoride mümkün olabileceği düşüncesini doğuruyor.

Bilim insanı tüm evrenin bir kara delik olup olamayacağını sorusunu irdeleyen ilk kişiler olmadıklarını da vurguladı. Ona göre daha önce birçok bilim insanı farklı yollardan bu fikre ulaşmıştı.

Lineweaver, tıpkı bir kara deliğin çevresinde olduğu gibi, gözlemlenebilir evrenin çevresinde de bir tür olay ufkunun yer aldığını ve bunun aralarındaki paralelliklerden yalnızca biri olduğunu savundu.

Genel görelilikte olay ufku, kara deliğin sınırında ışık ve maddenin kütleçekim kuvvetinden artık kaçamayacağı bölgeyi sınırlayan kuşağa deniyor.

Öte yandan bu teorinin doğru olup olmadığını sınamayı engelleyen önemli bir faktör var: Bilim insanları bir kara deliğin içinde ne olduğunu bilmiyor.

Bu fikrin en azından şimdilik imkansız göründüğünün de altını çizen bilim insanı, "Kara deliğin merkezinin kara deliğin kendisinden daha yoğun olması muhtemel değil mi? Yine de merkez hakkında hiçbir şey bilmiyoruz" diyor:

Geniş açıdan bakalım: Eğer gözlemlenebilir evrenin ötesinde hiçbir şey olmasaydı, evrenimiz düşük yoğunluklu büyük bir kara delik olurdu. Bu fikir biraz korkutucu ama durumun böyle olmadığına inanmak için iyi nedenlerimiz var.

Independent Türkçe



Her şeyin nasıl başladığını ortaya çıkarabilecek bir sinyal belirlendi

(Hans Lucas/AFP)
(Hans Lucas/AFP)
TT

Her şeyin nasıl başladığını ortaya çıkarabilecek bir sinyal belirlendi

(Hans Lucas/AFP)
(Hans Lucas/AFP)

Andrew Griffin 

Evrenin erken dönemlerinden gelen bir radyo sinyali, çevremizdeki her şeyin nasıl başladığını anlamamızı sağlayabilir.

21 santimetre sinyali diye bilinen bu sinyal, ilk yıldızların ve galaksilerin nasıl yanmaya başladığını ve evreni karanlıktan ışığa nasıl çıkardığını nihayet anlamamızı mümkün kılabilir.

Cambridge Üniversitesi'nden makalenin ortak yazarı Anastasia Fialkov yaptığı açıklamada, "Bu, karanlık evrendeki ilk ışığın nasıl ortaya çıktığını öğrenmek için eşsiz bir fırsat" diyor. 

Soğuk, karanlık bir evrenden yıldızlarla dolu bir evrene geçiş hikayesini yeni yeni anlamaya başlıyoruz.

Sinyal, 13 milyar yıldan fazla bir süre önceden, Büyük Patlama'nın sadece 100 milyon yıl sonrasından bize ulaşıyor. Zayıf parıltı, yıldızların oluştuğu uzay bölgeleri arasındaki boşluğu dolduran hidrojen atomları tarafından yaratılıyor.

Bilim insanları artık bu sinyalin doğasını kullanarak erken evreni daha iyi anlayabileceklerine inanıyor. Bunu, evrenin başlangıcıyla ilgili verileri ortaya çıkarmak için radyo sinyallerini yakalamaya çalışacak REACH (Radio Experiment for the Analysis of Cosmic Hydrogen / Kozmik Hidrojen Analizi için Radyo Deneyi) adlı radyo anteniyle yapacaklar.

Araştırmacılar bu projenin nasıl işleyeceğini daha iyi anlamak için REACH ve Kilometre Kare Dizisi adlı başka bir projenin, ilk yıldızların kütleleri ve diğer ayrıntıları hakkında nasıl bilgi sağlayabileceğini öngören bir model oluşturdu.

Profesör Fialkov, "İlk yıldızların kütlelerinin 21 santimetre sinyaline bağımlılığını ve ilk yıldızlar öldüğünde üretilen, X ışını ikililerinden gelen ultraviyole yıldız ışığı ve X ışını emisyonlarının etkisi de dahil olmak üzere tutarlı bir şekilde modelleyen ilk grubuz" diyor.

Bu bilgiler, Büyük Patlama'nın ürettiği hidrojen-helyum bileşimi gibi, evrenin ilkel koşullarını birleştiren simülasyonlardan elde edildi.

REACH teleskobunun baş araştırmacısı ve çalışmanın ortak yazarı Eloy de Lera Acedo, "Bildirdiğimiz tahminler, evrendeki ilk yıldızların doğasını anlamamız açısından muazzam önem taşıyor" ifadelerini kullanıyor.

Radyo teleskoplarımızın, ilk yıldızların kütlesi ve ilk ışıkların bugünkü yıldızlardan ne kadar farklı olabileceği hakkında ayrıntılı bilgiler verebileceğine dair kanıt sunuyoruz.

REACH gibi radyo teleskopları, evrenin bebeklik döneminin gizemlerini çözme yolunda umut vaat ediyor ve bu tahminler, Güney Afrika'daki Karoo'dan yaptığımız radyo gözlemlerine rehberlik etmesi açısından hayati önemde.

Çalışma, hakemli dergi Nature Astronomy'de yayımlanan "Determination of the mass distribution of the first stars from the 21-cm signal" (21 santimetre sinyalinden ilk yıldızların kütle dağılımının belirlenmesi) başlıklı yeni bir makalede anlatılıyor.

 Independent Türkçe, independent.co.uk/space