Şimdiye dek ölçülen en zayıf yerçekimi kuantum fiziği araştırmasında oluşturuldu

"Einstein'la kuantum mekaniğini buluşturabilir"

Bilim insanları, Einstein'ın genel görelilik kuramıyla kuantum teorisini uzlaştırabilmek için uzun süredir çalışıyor (Unsplash)
Bilim insanları, Einstein'ın genel görelilik kuramıyla kuantum teorisini uzlaştırabilmek için uzun süredir çalışıyor (Unsplash)
TT

Şimdiye dek ölçülen en zayıf yerçekimi kuantum fiziği araştırmasında oluşturuldu

Bilim insanları, Einstein'ın genel görelilik kuramıyla kuantum teorisini uzlaştırabilmek için uzun süredir çalışıyor (Unsplash)
Bilim insanları, Einstein'ın genel görelilik kuramıyla kuantum teorisini uzlaştırabilmek için uzun süredir çalışıyor (Unsplash)

Bilim insanları, kuantum mekaniği deneyinde mikroskobik ölçekte yerçekimi gözlemledi. 

Hollanda'daki Leiden Üniversitesi'nden araştırmacıların yaptığı çalışmada, Albert Einstein'in genel görelilik teorisiyle kuantum mekaniği arasındaki ilişkiyi anlamaya yönelik önemli bir adım atıldı. 

Bilimsel dergi Science Advances'ta dün yayımlanan çalışmada, manyetik özelliğe sahip süperiletken bir düzenek oluşturuldu. 

Nadir bir kimyasal element olan tantaldan yapılma bu düzenek, evrende mümkün en düşük sıcaklığa yani -268.7 santigrat dereceye kadar soğutuldu.

Deneyde kullanılan parçacık da 0,25 milimetrelik neodyum mıknatısla 0,25 milimetrelik bir cam kürenin birleştirilmesiyle hazırlandı. Bu parçacık, manyetik düzenek üzerinde havada asılı tutuldu. 

Daha sonra elektrikli bisiklet tekerine üç adet 2,45 kilogramlık pirinç ağırlıklar kondu ve bu da düzenekten yarım metre öteye yerleştirildi. İki nesne arasındaki çekim kuvveti, nesnelerin kütlelerine ve aralarındaki mesafeye bağlı. Kütlenin büyüklüğü ve yakınlık arttıkça, çekim gücü de yükseliyor. 

Deneyde, tekerin çalıştırılmasıyla yarım miligramlık parçacığa 30 attonewton çekim gücü uygulandığı gözlemlendi. 

Leiden Üniversitesi'nden Tim Fuchs, "Tekerleği döndürmeye başladık ve parçacık tıpkı salıncak gibi hareket etti. Yerçekimi kuvveti parçacığı çekiyor, sonra bırakıyor ardından da tekrar çekiyor" dedi. 

Böylelikle bilim insanları şimdiye kadarki en zayıf yerçekimini ölçmüş oldu. Bir önceki rekor, 2021'de 90 miligramlık altın bir küreyle yapılan deneyde elde edilmişti.

Fuchs, yeni deneyin Einstein'ın genel görelilik teorisiyle kuantum mekaniğini birlikte düşünebilme açısından önemli bir gelişme olduğunu belirterek şunları söyledi: 

Kuantum mekaniğiyle Einstein'ın yerçekimi teorisi olan genel göreliliğin, formüle ettiğimiz şekliyle uyumlu olmadığını biliyoruz. Bu teoriler birlikte çalışmıyor dolayısıyla birinden veya her ikisinden de vazgeçilmesi gerektiğini biliyoruz. Bizim çalışmamız, bu iki teori arasındaki açığı gerçek deneylerle kapatmayı amaçlıyor.

Teorik fizikçi, kuantum mekaniğiyle genel göreliliği bir araya getireceği düşünülen "kuantum yerçekimine" bir adım daha yaklaştıklarını belirtti. 

Fuchs, yerçekiminin kuantum ölçeğinde nasıl çalıştığını anlamanın, evrenin başlangıcından karadeliklerde olup bitene kadar bazı büyük gizemlerin çözülmesini sağlayabileceğine dikkat çekti.

Independent Türkçe, Guardian, Science Alert



Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
TT

Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)

Vishwam Sankaran Bilim ve Teknoloji Muhabiri 

Güneş'in, mevcut döngüsünün henüz yarısında olmasına rağmen bir sonraki faaliyet döngüsüne başladığının ilk işaretlerini tespit eden bilim insanlarının keşfi, Güneş fırtınalarının daha iyi modellenmesini sağlayabilir.

11 yıllık döngüler sırasında Güneş, leke sayısının ve aktivite yoğunluğunun artarak zirveye ulaşmasıyla yoğun Güneş fırtınaları ihtimalinin en yüksek seviyeye taşındığı dönemlerden geçiyor.

Güneş halihazırda 25. döngüsünün en yüksek aktivitesine, yani  "solar maksimuma" yaklaşıyor. Bu döngü, Güneş aktivitesinin kapsamlı bir şekilde kaydedilmeye başlandığı 1755'ten bu yana gerçekleşen 25. döngü olması nedeniyle bu şekilde adlandırılıyor.

Bu döngünün 6 yıl daha devam etmesi beklenirken, Birmingham Üniversitesi'nden bilim insanları bir sonraki Güneş döngüsünün ilk işaretlerini keşfetti.

Solar maksimum sırasında Güneş, manyetik alanını çevirerek kutuplarının yerini değiştiriyor ve bu da yıldızın yüzeyindeki aktiviteyi etkileyerek Dünya'ya daha fazla Güneş patlaması gönderiyor.

Güneş'in aktivitesinin tavan yaptığı dönemdeki güçlü Güneş fırtınaları, düşük irtifalarda bile parlak auroralara yol açabiliyor.

Ayrıca yörüngedeki uydulara, elektrik şebekelerine ve telekomünikasyon sistemlerine de zarar verebiliyorlar.

Araştırmacılar Güneş döngüsünü, yıldızın içindeki ses dalgalarını ölçüp bunların nasıl döndüğünü izleyerek takip ediyor.

Bunlar, 11 yıllık döngü boyunca Güneş'in ekvatoruna ve kutuplarına doğru dönen ve göç eden, Güneş burulma salınımı adlı hızlı hareket eden şeritlerden oluşan bir örüntü gibi görülebilir.

Bilim insanları daha hızlı dönen şeritlerin bir sonraki Güneş döngüsü başlamadan önce ortaya çıktığını biliyor.

Araştırmacılar, bu şekilde dönen şeritleri gösteren yeni verilere dayanarak bir sonraki Güneş döngüsünün başladığına dair zayıf işaretler buldu.

Birmingham Üniversitesi'nden Rachel Howe "Plan üzerinde bir Güneş döngüsü, yani 11 yıl geriye gidince, 2017'de gördüğümüz şekille birleşiyor gibi görünen benzer bir şey görülüyor. Bu şekil, mevcut Güneş döngüsü 25. Döngü'nün bir özelliği haline geldi" diyor.

2030'a kadar resmen başlamayacak 26. Döngü'nün muhtemelen ilk izlerini görüyoruz.

Bilim insanları daha fazla veriyle, Güneş'in faaliyet döngüsünü yönlendiren plazma ve manyetik alanların karmaşık dansında bu akışların oynadığı rolü daha iyi anlamayı umuyor.

Dr. Howe, "Yaklaşık 6 yıl sonra başlayacak 26. Döngü'de bu örüntünün tekrarlanacağına dair ilk ipucunu görmek heyecan verici" diyor.