Microsoft'tan kuantum bilgisayarda devrim: Maddenin yeni bir hali kullanıldı

Majorana 1 çipi, kuantum bilgisayarların temel sorunlarını çözebilir (Microsoft)
Majorana 1 çipi, kuantum bilgisayarların temel sorunlarını çözebilir (Microsoft)
TT

Microsoft'tan kuantum bilgisayarda devrim: Maddenin yeni bir hali kullanıldı

Majorana 1 çipi, kuantum bilgisayarların temel sorunlarını çözebilir (Microsoft)
Majorana 1 çipi, kuantum bilgisayarların temel sorunlarını çözebilir (Microsoft)

Microsoft, maddenin yeni bir haline geçebilen bir malzeme kullanarak kuantum çipi ürettiğini açıkladı. Şirket, kuantum bilgisayar devriminin çok yaklaştığını öne sürüyor.

Kuantum bilgisayarlar, temel bilgi birimi olarak klasik versiyonlarındaki bitler yerine kuantum biti (kübit) kullanıyor. Bitler aynı anda sadece 0 veya 1 durumunda olabilirken, kuantum fiziğinin hakim olduğu kübitler, aynı anda birden fazla durumda bulunarak işlem hızının katlanarak artmasını sağlıyor. 

Dünya genelinde çeşitli şirketler bu teknolojiyi geliştirmek için yarışıyor ve kuantum bilgisayarların, tıptan yapay zekaya pek çok alanda muazzam sıçramalar yaratması bekleniyor.

Ancak kübitlerin çevresel koşullara karşı hassas olması ve kontrol edilmesindeki zorluk, beklenen kuantum atılımının önünde engel teşkil ediyor. 

Bilim insanları bu sorunları çözme yollarını ararken Microsoft, "topolojik kübit" adı verilen yeni bir kübit geliştirerek önemli bir başarıya imza attı. 

Yeni teknoloji, Majorana fermiyonu denen bir atom altı bir parçacığa dayanıyor. Kübitlerin karşılaştığı sorunlara daha dayanıklı olan bu parçacıklar ilk kez 1930'larda ortaya atılmış ancak fizikçiler bunu bulup kontrol etmeyi başaramamıştı.

17 yıldır bu konu üzerine çalışan Microsoft, "dünyanın ilk topoiletkenini" geliştirerek kuantum bilgisayarları mümkün kılacağını söylediği topolojik kübitleri üretmeyi başardı.

Bulgularını önde gelen hakemli dergi Nature'da dün (19 Şubat) yayımlayan araştırmacılar, indiyum arsenit (yarı iletken) ve alüminyumu (süperiletken) birleştirerek topoiletkeni üretti.

Klasik bilgisayarlardaki çipler yarı iletken maddelerden yapılırken, kuantum bilgisayarlarda genellikle süperiletken tercih ediliyor. Microsoft ikisini birleştirdiği yeni cihazın, neredeyse mutlak sıfıra kadar soğutulmasıyla Majorana fermiyonunun ortaya çıktığını söylüyor.

Bilim insanları, maddeyi topolojik duruma getirmenin sürecin en zor kısmı olduğunu ifade ediyor. Microsoft ekibinden Jason Zander, "En zor kısmı işin fiziğini çözmekti" diyerek ekliyor:

Bunun için bir ders kitabı yok ve biz bunu icat etmek zorundaydık.

Topoiletkenle geliştirilen Majorana 1 adlı çip halihazırda sadece 8 kübit içeriyor. Ancak şirket, 1 milyon kübit içeren çiplerin geliştirilmesinde kritik bir adıma işaret ettiğini savunuyor.

Teknolojiyi üreten ekibin lideri Chetan Nayak, kuantum bilgisayarlar için "Biz bunu onlarca yıl değil, yıllarca uzakta olan bir şey olarak görüyoruz" diyor.

NVIDIA CEO'su Jensen Huang kısa süre önce teknolojinin pratik kullanımının 20 yıl ileride olduğunu söylerken, Google 5 yıl sonrayı işaret etmişti.

Google, Aralık 2024'te tanıttığı Willow çipiyle kübit sayısı arttıkça bilgisayarın hata yapma oranının azaldığını duyurmuştu. Normalde kübit sayısıyla birlikte sorunlar da arttığı için bu gelişme kuantum teknolojisinde kritik bir dönüm noktasına işaret ediyor.

Majorana 1 de sektörde benzer bir heyecana yol açtı. Harvard Üniversitesi Fizik Bölümü'nden Philip Kim, topolojik kübitlerin kuantum bilgisayarların gelişimini hızlandırabileceğini belirtiyor:

Eğer her şey yolunda giderse Microsoft'un araştırması devrim niteliğinde olabilir.

Diğer yandan Kaliforniya Teknoloji Enstitüsü'nden (Caltech) teorik fizikçi Jason Alicea, şirketin gerçekten bir topolojik kübit inşa ettiğine şüpheyle yaklaşıyor. Kuantum sistemlerinin davranışını kanıtlamanın genellikle zor olduğunu söylüyor.

Microsoft'un yeni çipi halihazırda çok fazla hata yapıyor ancak çoğu bilim insanı, topolojik kübitler kusursuz hale getirilirse hata düzeltme işlemlerinin daha kolay ve verimli olacağını düşünüyor.

Nayak, "1 milyon kübit içeren kuantum bilgisayar sadece bir kilometre taşı değil, dünyanın en zor sorunlarından bazılarını çözmeye açılan bir kapı" diyerek ekliyor: 

Faydalı kuantum hesaplamaya giden yolumuz net. Temel teknoloji kanıtlanmış durumda ve yapımızın ölçeklenebilir olduğuna inanıyoruz. 

Independent Türkçe, New York Times, Live Science, Reuters, Verge, Microsoft, Nature



Beynin korkuyu nasıl yendiği bulundu

Korkuyu yönetme becerisi, bu duyguyu hissetmek kadar önem taşıyor (Unsplash)
Korkuyu yönetme becerisi, bu duyguyu hissetmek kadar önem taşıyor (Unsplash)
TT

Beynin korkuyu nasıl yendiği bulundu

Korkuyu yönetme becerisi, bu duyguyu hissetmek kadar önem taşıyor (Unsplash)
Korkuyu yönetme becerisi, bu duyguyu hissetmek kadar önem taşıyor (Unsplash)

Bilim insanları beynin içgüdüsel korkuyu nasıl atlattığını tespit etti. Bulguların fobi ve anksiyete gibi korkuyla ilişkili ruh sağlığı sorunlarını çözmeye katkı sağlaması bekleniyor.

Korku, hayatta kalmak için kritik önem arz ediyor. Ancak ortada gerçek bir tehlike olmadığını fark edince bu duygunun ortadan kalkması da büyük önem taşıyor. 

Bilim insanları, bulguları hakemli dergi Science'ta dün (6 Şubat) yayımlanan çalışmada beynin bunu nasıl yaptığını buldu. 

Araştırmacılar yaklaşık 100 fareyi tek tek kapalı bir alana koyarak onları, yırtıcı bir kuşun üzerlerine doğru geldiği izlenimi yaratan, gittikçe genişleyen bir gölgeye maruz bıraktı.  

İçgüdüsel korkularının tetiklenmesiyle fareler ilk başta sığınacak bir yer bulmak için koşturmaya başladı. 

Ancak 30 ila 50 simülasyonun ardından hayvanlar normal davranışlarına geri döndü. 

Ekip, deneyler sırasında farelerin beyin aktivitesini izleyerek korkularını bastırmayı öğrendikçe hangi sinirsel mekanizmaların harekete geçtiğini kaydetti.

Bulgular, öğrenme sürecinin ilk aşamasında görsel korteksin kritik bir rol üstlendiğini gösteriyor. Ancak fare içgüdüsel korkusunu bastırmayı öğrendiğinde bu bilgi, beynin bugüne kadar pek incelenmeyen ventrolateral genikülat çekirdek (vLGN) adlı bölgesinde depolanıyor. 

Farelerin öğrenme ve hatırlama süreçlerini inceleyen daha önceki çalışmalarda bilim insanları büyük ölçüde görsel kortekse odaklanıyordu. 

Çalışmaya liderlik eden Sara Mederos, vLGN'nin öğrenilenleri unutma sürecine dahil olduğu bilinse de anıların burada depolandığının bugüne kadar netlik kazanmadığını söylüyor.

University College London'dan Mederos bulguları şöyle değerlendiriyor:

Beynin hangi potansiyel içgüdüsel tehlikelerin aslında tehlike teşkil etmediğini deneyim yoluyla anlamasını sağlayan mekanizmayı ortaya çıkardık.

Araştırmacılar bir beyin fonksiyonunun bu kadar detaylıca anlaşılmasının nadir gerçekleşen bir durum olduğunu ifade ediyor.

Ekip, benzer sinir yollarının insan beyninde de bulunması nedeniyle bulguların, fobi, anksiyete ve travma sonrası stres bozukluğu (TSSB) gibi korkuyla ilişkili ruh sağlığı sorunlarının tedavisine katkı sağlayabileceğini söylüyor.

Korkunun beyinde nasıl bastırıldığının anlaşılmasıyla bu bölgeleri hedefleyen tedaviler geliştirilebilir. Ancak ekip bunun için daha fazla çalışmaya ihtiyaç duyulduğunu da belirtiyor.

Mederos "Beyindeki vLGN gibi bölgelere odaklanmak, bu rahatsızlıkların tedavisinde yeni yollar açabilir" diyerek ekliyor:

Özellikle vLGN'yi hedef alan özel ilaçlar, anksiyete veya TSSB tedavisine yardımcı olabilir.

Independent Türkçe, Washington Post, IFLScience, Science