Batarya teknolojisinde yeni yaklaşım, performansı yükseltmeyi vaat ediyor

Son derece düşük sıcaklıklarda bile bataryayı iyileştiren yeni çözücüyle tanışın

Fotoğraf: Reuters
Fotoğraf: Reuters
TT

Batarya teknolojisinde yeni yaklaşım, performansı yükseltmeyi vaat ediyor

Fotoğraf: Reuters
Fotoğraf: Reuters

Bilim insanları küresel elektrifikasyonun köşe taşı olan batarya teknolojisinde, bunların daha hızlı şarj olması, daha uzun süre dayanması ve sıcaklık dalgalanmalarıyla daha iyi başa çıkabilmesi adına atılımlar yapmak için yarışıyor.

Bataryalar sadece elektrikli araçlara güç sağladıkları için değil, aynı zamanda Güneş panelleri ve rüzgar türbinleri gibi yenilenebilir kaynaklardan elde edilen temiz enerjiyi depoladıkları için de iklim kriziyle mücadelenin kilit bir parçası.

Çarşamba günü yayımlanan bir araştırma makalesinde detaylandırılan yeni bulgular lityum iyon bataryanın, şarj ve deşarj olmasını sağlayan çözelti olan elektrolitini değiştirerek geliştirilebileceğini öne sürüyor. Lityum iyon halihazırda elektrikli araçlar ve temiz enerji depolamadaki ana batarya türü.

Hangzhou'daki Zhejiang Üniversitesi ve Pekin Teknoloji Enstitüsü'nden araştırmacılar, elektrolitte iyileştirmeler yapmanın zor olduğunu çünkü hem yüksek iletkenlik hem de düşük çözünme enerjisi gerektirdiğini, bunun da bataryaların döngü ömrünü sınırlayabileceğini söylüyor.

Küçük moleküllerden meydana gelen bir kimyasal olan floroasetonitril adlı bir çözücü kullanan ekip, bunun lityum iyonlarının elektrolit boyunca hareket etme şeklini iyileştirdiğini belirtiyor. Sonuç, bataryanın daha hızlı şarj edilmesini sağlayan yüksek iletkenlik oldu.

Dahası, eksi 65 santigrat derece gibi son derece düşük sıcaklıklarda test edildiğinde bile batarya performansı yüksek kaldı. Düşük sıcaklıklarda batarya ömrü genellikle tehlikeye giriyor.

Araştırmacılar bu çalışmanın sadece lityum iyon bataryaların geliştirilmesinde değil, diğer enerji depolama sistemleri için de umut vaat ettiğini söylüyor.

ABD Enerji Bakanlığı kasımda batarya ve bunların kritik önemdeki mineral bileşenlerini üreten şirketlere 3,5 milyar dolar yatırım yaptığını açıklamıştı.

ABD yönetimi lityum iyon batarya talebinin bu 10 yılın sonuna gelindiğinde 10 katına çıkmasını bekliyor.

Ancak lityum iyon bataryaların alev almasına ilişkin endişeler giderek artıyor. Geçen hafta New York'un Harlem bölgesindeki bir apartmanı saran ve 27 yaşındaki bir gazetecinin ölümüne yol açan yangına elektrikli bisikletlere güç sağlayan lityum iyon bataryaların neden olduğu belirtilmişti.

Haziran 2023'te de New York'taki bir elektrikli bisiklet dükkanında lityum iyon bataryaların alev alarak üst katlardaki dairelere sıçraması sonucu 4 kişi hayatını kaybetmişti. Aralıktaysa Alaska açıklarında yaklaşık 2 bin ton lityum iyon batarya taşıyan bir kargo gemisinde yangın çıkmıştı.

Independent Türkçe

 



İncir ağacının karbondioksiti taşa çevirdiği ortaya çıktı

İncir ağaçları atmosferdeki karbondioksiti yakalayıp tutma açısından umut vaat ediyor (Unsplash)
İncir ağaçları atmosferdeki karbondioksiti yakalayıp tutma açısından umut vaat ediyor (Unsplash)
TT

İncir ağacının karbondioksiti taşa çevirdiği ortaya çıktı

İncir ağaçları atmosferdeki karbondioksiti yakalayıp tutma açısından umut vaat ediyor (Unsplash)
İncir ağaçları atmosferdeki karbondioksiti yakalayıp tutma açısından umut vaat ediyor (Unsplash)

Bilim insanları bazı incir ağacı türlerinin yüksek miktarda karbondioksiti taşa çevirebildiğini buldu.

Bütün ağaçlar havadaki karbondioksiti toplayarak bunu selülöz gibi bitkiyi meydana getiren yapılara dönüştürür. Bazı ağaçlarsa CO2'yi kalsiyum oksalat adı verilen kristal bir bileşiğe çevirir. Bu bileşik daha sonra kireçtaşı ve tebeşir gibi taşların ana bileşeni olan kalsiyum karbonata dönüştürülebilir.

Kalsiyum karbonattaki inorganik karbon toprakta organik karbona kıyasla çok daha uzun süre kalabildiğinden daha etkili bir CO2 tutma yöntemi sunuyor.

Zürih Üniversitesi'nden Dr. Mike Rowley liderliğindeki bir araştırma ekibi bazı incir ağaçlarının da karbondioksitten şaşırtıcı seviyelerde kalsiyum karbonat üretebildiğini keşfetti. 

Araştırmacılar Kenya'nın Samburu bölgesine özgü üç incir ağacı türünü belirledikten sonra kalsiyum karbonatın ağaçtan ne kadar uzakta oluştuğunu inceledi. Ayrıca bu süreçte rol alan mikrobiyal toplulukları da tespit ettiler. 

Bilim insanları senkrotron analizi yoluyla kalsiyum karbonatın hem ağaç gövdelerinin dış kısmında hem de ağacın derinlerinde oluştuğunu buldu.

Çalışmanın bulgularını Prag'da düzenlenen Goldschmidt Konferansı'nda yarın sunması beklenen Dr. Rowley "Beni gerçekten şaşırtan ve hâlâ şaşırdığım şey, kalsiyum karbonatın ağaç yapılarının beklediğimden çok daha derinlerine inmesiydi" diyerek ekliyor: 

Bunun ağaç yapısındaki çatlaklarda gerçekleşen yüzeysel bir süreç olmasını bekliyordum.

Çalışmanın bulguları ağaç öldükten çok sonra bile karbonun toprakta kalacağına ve böylece meyveleri için dikilen incir ağaçlarının ekstradan iklim faydaları sağlayabileceğine işaret ediyor.

Dr. Rowley, "Ağaçların büyük bir kısmı toprak üstünde kalsiyum karbonata dönüşüyor" diyor: 

Ayrıca toprağın beklenmedik yerlerinde kök yapılarının yüksek konsantrasyonlarda kalsiyum karbonata dönüştüğünü görüyoruz.

İnceledikleri ağaçlar arasında en büyük etkiyi Ficus wakefieldii türünün yarattığını saptayan ekip, ağacın su ihtiyacını ve meyve verimini ölçmeyi ve farklı koşullar altında ne kadar CO2 tutulabileceğini araştırmayı planlıyor.

Bu ağaçların yaygınlaşması, iklim krizinin arkasındaki en önemli nedenlerden biri olan karbondioksitin atmosferden uzaklaştırılmasına büyük katkı sağlayabilir.

Independent Türkçe, Phys.org, New Scientist, Goldschmidt Konferansı