NASA'dan nükleer rokete maddi destek: Mars'a yolculuğu 45 güne indirecek

Bimodal Nükleer Termal Roket, radyasyona maruz kalmayı ve gezegenler arası seyahatle ilgili diğer büyük riskleri önemli ölçüde azaltabilir

Nükleer-Termal Tahrik'in bilgisayarda oluşturulmuş görüntüsü (NASA)
Nükleer-Termal Tahrik'in bilgisayarda oluşturulmuş görüntüsü (NASA)
TT

NASA'dan nükleer rokete maddi destek: Mars'a yolculuğu 45 güne indirecek

Nükleer-Termal Tahrik'in bilgisayarda oluşturulmuş görüntüsü (NASA)
Nükleer-Termal Tahrik'in bilgisayarda oluşturulmuş görüntüsü (NASA)

NASA, Mars'a yolculuk süresini 7 aydan sadece 45 güne indirebilecek nükleer enerjili bir roket için fon ayırdığını açıkladı.
Bimodal Nükleer Termal Roket, hem insanları hem de kargoyu Güneş Sistemi boyunca taşımak için kullanılabilir ve radyasyona maruz kalma gibi gezegenler arası seyahatle ilgili büyük riskleri önemli ölçüde azaltabilir.
Konsept, iki modlu tasarımın "derin uzay araştırmalarında devrim yaratacağını" iddia eden, Florida Üniversitesi'nden Profesör Ryan Gosse tarafından ortaya atıldı.
The Independent'ta yer alan habere göre, NASA, gelecek on yıllarda uzay görevlerini "çarpıcı ölçüde iyileştirme" potansiyeline sahip "yüksek riskli, yüksek getirili projeleri" finanse etmeyi amaçlayan bir dizi yeni hibe yoluyla roketin geliştirilmesini fonlayacak.
NASA'nın Uzay Teknolojisi Misyonu Direktörlüğü'nden müdür yardımcısı Jim Reuter, "ABD, yönetim genelinde ve endüstriyle birlikte çalışarak, uzayda kullanılan nükleer tahrik teknolojilerini ilerletiyor" dedi.

"Bu tasarım sözleşmeleri, bir gün yeni görevleri ve heyecan verici keşifleri ilerletebilecek somut reaktör donanımına doğru atılan önemli adımlar."

1950'lerden 1980'lere kadar, Amerikan ve Sovyet uzay programlarının her ikisi de uzay yolculuğu için Nükleer-Termal Tahrik (NTP) teknolojisinin kullanım potansiyelini araştırdı. NTP'de itici gaz olarak sıvı hidrojen nükleer bir reaktörde ısıtılır, bu da sıvıyı, itme gücü üreten plazmaya dönüştürür.
2000'li yıllarda NASA, itmede kullanmak üzere gaz iyonize etmek için elektromanyetik alan oluşturan bir motora enerji verecek elektriğin üretiminde bir nükleer reaktörden faydalanan Nükleer-Elektrik Tahrik (NEP) teknolojisiyle yeni bir roket türü geliştirmeye çalıştı.
Hem NTP hem de NEP teknolojilerini iki modlu bir tahrik yöntemiyle birleştiren Profesör Gosse'un tasarımı, teorik olarak her iki teknolojinin de kendi başına üretebileceği hızı iki katına çıkaracak.



Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
TT

Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)

Vishwam Sankaran Bilim ve Teknoloji Muhabiri 

Güneş'in, mevcut döngüsünün henüz yarısında olmasına rağmen bir sonraki faaliyet döngüsüne başladığının ilk işaretlerini tespit eden bilim insanlarının keşfi, Güneş fırtınalarının daha iyi modellenmesini sağlayabilir.

11 yıllık döngüler sırasında Güneş, leke sayısının ve aktivite yoğunluğunun artarak zirveye ulaşmasıyla yoğun Güneş fırtınaları ihtimalinin en yüksek seviyeye taşındığı dönemlerden geçiyor.

Güneş halihazırda 25. döngüsünün en yüksek aktivitesine, yani  "solar maksimuma" yaklaşıyor. Bu döngü, Güneş aktivitesinin kapsamlı bir şekilde kaydedilmeye başlandığı 1755'ten bu yana gerçekleşen 25. döngü olması nedeniyle bu şekilde adlandırılıyor.

Bu döngünün 6 yıl daha devam etmesi beklenirken, Birmingham Üniversitesi'nden bilim insanları bir sonraki Güneş döngüsünün ilk işaretlerini keşfetti.

Solar maksimum sırasında Güneş, manyetik alanını çevirerek kutuplarının yerini değiştiriyor ve bu da yıldızın yüzeyindeki aktiviteyi etkileyerek Dünya'ya daha fazla Güneş patlaması gönderiyor.

Güneş'in aktivitesinin tavan yaptığı dönemdeki güçlü Güneş fırtınaları, düşük irtifalarda bile parlak auroralara yol açabiliyor.

Ayrıca yörüngedeki uydulara, elektrik şebekelerine ve telekomünikasyon sistemlerine de zarar verebiliyorlar.

Araştırmacılar Güneş döngüsünü, yıldızın içindeki ses dalgalarını ölçüp bunların nasıl döndüğünü izleyerek takip ediyor.

Bunlar, 11 yıllık döngü boyunca Güneş'in ekvatoruna ve kutuplarına doğru dönen ve göç eden, Güneş burulma salınımı adlı hızlı hareket eden şeritlerden oluşan bir örüntü gibi görülebilir.

Bilim insanları daha hızlı dönen şeritlerin bir sonraki Güneş döngüsü başlamadan önce ortaya çıktığını biliyor.

Araştırmacılar, bu şekilde dönen şeritleri gösteren yeni verilere dayanarak bir sonraki Güneş döngüsünün başladığına dair zayıf işaretler buldu.

Birmingham Üniversitesi'nden Rachel Howe "Plan üzerinde bir Güneş döngüsü, yani 11 yıl geriye gidince, 2017'de gördüğümüz şekille birleşiyor gibi görünen benzer bir şey görülüyor. Bu şekil, mevcut Güneş döngüsü 25. Döngü'nün bir özelliği haline geldi" diyor.

2030'a kadar resmen başlamayacak 26. Döngü'nün muhtemelen ilk izlerini görüyoruz.

Bilim insanları daha fazla veriyle, Güneş'in faaliyet döngüsünü yönlendiren plazma ve manyetik alanların karmaşık dansında bu akışların oynadığı rolü daha iyi anlamayı umuyor.

Dr. Howe, "Yaklaşık 6 yıl sonra başlayacak 26. Döngü'de bu örüntünün tekrarlanacağına dair ilk ipucunu görmek heyecan verici" diyor.