Google'dan büyük atılım: Hastalık genlerini yapay zeka tespit edecek

DeepMind'ın kurucusu Demis Hassabis, yapay genel zekanın insan düzeyine ulaşmasına sadece birkaç yıl kaldığını iddia ediyor (Unsplash)
DeepMind'ın kurucusu Demis Hassabis, yapay genel zekanın insan düzeyine ulaşmasına sadece birkaç yıl kaldığını iddia ediyor (Unsplash)
TT

Google'dan büyük atılım: Hastalık genlerini yapay zeka tespit edecek

DeepMind'ın kurucusu Demis Hassabis, yapay genel zekanın insan düzeyine ulaşmasına sadece birkaç yıl kaldığını iddia ediyor (Unsplash)
DeepMind'ın kurucusu Demis Hassabis, yapay genel zekanın insan düzeyine ulaşmasına sadece birkaç yıl kaldığını iddia ediyor (Unsplash)

Hastalığa yol açan genlerin belirlenmesinde kayda değer bir adım attığını ifade eden Google, bunun nadir görülen genetik bozuklukların tespitine katkı sağlayacağını belirtiyor.

AlphaMissense adlı yeni bir model, genlerdeki tüm olası "yanlış anlamlı" varyantların yüzde 89'unu güvenilir bir şekilde sınıflandırarak bunların hastalıklara yol açma ihtimali taşıyıp taşımadığını ve iyi huylu olup olmadığını belirleyebiliyor. Buna karşılık insan uzmanlar, tüm yanlış anlamlı varyantların yalnızca binde 1'ini güvenilir bir şekilde sınıflandırabiliyor.

Yanlış anlamlı varyantlar, DNA'da tek bir harfin yer değiştirmesiyle ortaya çıkar ve bu da farklı bir amino asit içeren proteinlere yol açar. Bu küçük değişikliğin kayda değer etkileri olabilir ki Google bunu, bir kelimedeki bir harfin değiştirilmesinin tüm cümlenin anlamını değiştirebilmesine benzetiyor.

Bu varyantların çoğu iyi huyludur: Ortalama bir insanda 9 binden fazla bulunur. Ancak bazıları nadir görülen genetik hastalıklara yol açarak feci sonuçlar doğurabilir.

Yeni AlphaMissense, yanlış anlamlı varyantlar hakkındaki mevcut bilgileri ve bunların insanlarda ve insanların yakın akrabası olan primatlarda ne kadar yaygın görüldüğünü inceledi. Nadiren görülen varyantları bulup bunları patojenik olarak sınıflandıran model, bu bilgiyi diğer protein dizilerini analiz etmek için kullanabilirken sadece sorunlara neden olup olmayacaklarına dair bir karar vermekle kalmayıp ne kadar güvenilir olduğunu da gösterdi.

İnsanların bu mutasyonları bulma amacıyla yaptığı deneyler pahalı ve yavaş: Benzersiz proteinlerin her birinin incelenmesi ve deneylerin ayrı ayrı tasarlanması gerekiyor. Google bu yeni sistemin, araştırmacıların tek seferde binlerce proteinle ilgili sonuçları "önden görmesini" ve nereye odaklanacaklarına karar vermelerini sağlayacağı anlamına geldiğini belirtiyor.

Şirketin, sistemlerini kullanarak yayımlamladığı muazzam genişlikteki "yanlış anlamlı" mutasyonlar kataloğu, araştırmacıların bu mutasyonların ne gibi etkileri olduğunu öğrenebilmesini amaçlıyor. Bu varyasyonlar bazı durumlarda kistik fibroz, orak hücreli anemi veya kanser gibi rahatsızlıklara yol açabilirken bunları anlamak, bu hastalıkları tedavi etmenin veya önlemenin yollarını inceleyen araştırmacılar için anahtar görevi görebilir.

Bu, çeşitli rahatsızlıkları hem tanımlamak hem de tedavi etmek adına yapay zekayı kullanmaya çalışan Google'ın Deepmind bölümünün sağlık alanındaki en son atılımı. Yeni sistem, yaşamın yapıtaşları olan proteinlerin anlaşılmasını sağlayan çığır açıcı AlphaFold modelini temel alarak kuruldu.

Araştırma, Science adlı bilimsel dergide yayımlanan "Accurate proteome-wide missense variant effect prediction with AlphaMissense"  (AlphaMissense'le proteom çapında yanlış anlamlı varyantın etkisinin isabetli tahmini) başlıklı yeni bir makalede anlatılıyor. Google, kataloğun "araştırma topluluğuna ücretsiz sunulduğunu" ve şirketin yapay zeka sisteminin arkasındaki kodu paylaşacağını açıkladı.

Independent Türkçe



Deepfake videoları tespit etmek giderek zorlaşıyor: Artık gerçekçi kalp atışları var

Kişilerin rızası ve bilgisi dışında üretilen deepfake görüntüler endişe yaratıyor (Reuters)
Kişilerin rızası ve bilgisi dışında üretilen deepfake görüntüler endişe yaratıyor (Reuters)
TT

Deepfake videoları tespit etmek giderek zorlaşıyor: Artık gerçekçi kalp atışları var

Kişilerin rızası ve bilgisi dışında üretilen deepfake görüntüler endişe yaratıyor (Reuters)
Kişilerin rızası ve bilgisi dışında üretilen deepfake görüntüler endişe yaratıyor (Reuters)

Deepfake videoların gelişmiş saptama yöntemlerini yanıltabildiği ve her geçen gün daha gerçekçi hale geldiği tespit edildi. 

Bir kişinin yüzünün ya da vücudunun dijital olarak değiştirilmesiyle oluşturulan deepfake videolar endişe yaratmaya devam ediyor. 

Bu videolar gerçek bir kişinin görüntüsünün yapay zeka kullanılarak değiştirilmesiyle yapılıyor. Aslında bu teknoloji, kullanıcıların yüzünü kediye dönüştüren veya yaşlandıran uygulamalar gibi zararsız amaçlarla da kullanılabiliyor.

Ancak insanların cinsel içerikli videolarını üretmek veya masum insanlara iftira atmak için de kullanılabilmesi ciddi bir sorun teşkil ediyor.

Bu videoların sahte olup olmadığını anlamak için kullanılan gelişmiş yöntemlerden biri kalp atışlarını izlemek. 

Uzaktan fotopletismografi (rPPP) adlı araç, deriden geçen ışıktaki küçük değişiklikleri tespit ederek nabzı ölçüyor. Nabız ölçen pulse oksimetreyle aynı prensiple çalışan bu araç, çevrimiçi doktor randevularının yanı sıra deepfake videoları tespit etmek için de kullanılıyor.

Ancak bulguları hakemli dergi Frontiers in Imaging'de bugün (30 Nisan) yayımlanan çalışmaya göre deepfake görüntülerde artık gerçekçi kalp atışları var.

Bilim insanları çalışmalarına videolardaki nabız hızını otomatik olarak saptayıp analiz eden bir deepfake dedektörü geliştirerek başladı. 

Ardından rPPP tabanlı bu aracın verilerini, EKG kayıtlarıyla karşılaştırarak hassasiyetini ölçtüler. Son derece iyi performans gösteren aracın EKG'yle arasında dakikada sadece iki-üç atımlık fark vardı. 

Ekip aracı deepfake videolar üzerinde test ettiğindeyse rPPP, videoya kalp atışı eklenmese bile son derece gerçekçi bir kalp atışı algıladı. 

Bilim insanları kalp atışlarının videoya kasten eklenebileceği gibi, kullanılan kaynak videodan kendiliğinden geçebileceğini de söylüyor.

Almanya'daki Humboldt Üniversitesi'nden çalışmanın ortak yazarı Peter Eisert "Kaynak video gerçek bir kişiye aitse, bu artık deepfake videoya aktarılabiliyor" diyerek ekliyor: 

Sanırım tüm deepfake dedektörlerinin kaderi bu; deepfake'ler gittikçe daha iyi hale geliyor ve iki yıl önce iyi çalışan bir dedektör bugün tamamen başarısız olmaya başlıyor.

Araştırmacılar yine de sahte videoları saptamanın başka yolları olduğunu düşünüyor. Örneğin sadece nabız hızını ölçmek yerine, yüzdeki kan akışını ayrıntılı olarak takip eden dedektörler geliştirilebilir.

Eisert, "Kalp atarken kan, damarlardan geçerek yüze akıyor ve daha sonra tüm yüz bölgesine dağılıyor. Bu harekette gerçek görüntülerde tespit edebileceğimiz küçük bir gecikme var" diyor.

Ancak bilim insanına göre nihai çözüm deepfake dedektörlerinden ziyade, bir görüntünün üzerinde oynanıp oynanmadığını anlamaya yarayan dijital işaretlere odaklanmaktan geçiyor:

Bir şeyin sahte olup olmadığını tespit etmek yerine bir şeyin değiştirilmediğini kanıtlayan teknolojiye daha fazla odaklanmadığımız sürece, deepfake'lerin saptanmalarını zorlaştıracak kadar iyi olacağını düşünüyorum.

Independent Türkçe, BBC Science Focus, TechXplore, Frontiers in Imaging