James Webb Uzay Teleskobu'yla gözlemlenen muazzam patlama, yaşamın kökenlerini açıklayabilir

İki nötron yıldızı birleşerek etrafımızda gördüğümüz her şey için gereken maddeleri oluşturdu

Araştırmacılar Samanyolu'nun merkezindeki en eski yıldızların şimdiye kadarki en detaylı gözlem setini elde etti (Unsplash)
Araştırmacılar Samanyolu'nun merkezindeki en eski yıldızların şimdiye kadarki en detaylı gözlem setini elde etti (Unsplash)
TT

James Webb Uzay Teleskobu'yla gözlemlenen muazzam patlama, yaşamın kökenlerini açıklayabilir

Araştırmacılar Samanyolu'nun merkezindeki en eski yıldızların şimdiye kadarki en detaylı gözlem setini elde etti (Unsplash)
Araştırmacılar Samanyolu'nun merkezindeki en eski yıldızların şimdiye kadarki en detaylı gözlem setini elde etti (Unsplash)

Bilim insanlarının gözlemlediği bugüne kadar görülen en güçlü patlamalardan biri, yaşamın nereden geldiğini açıklayabilir.

GRB 230307A diye bilinen bir gama ışını patlaması olan bu olağanüstü parlak patlama, iki nötron yıldızının bir araya gelip birleşmesiyle ortaya çıktı.

Bu da evren boyunca dalga dalga yayılan muazzam bir patlamaya neden oldu. Bilim insanları Dünya'dan görülebilen bu patlamayı NASA'nın yeni James Webb Uzay Teleskobu gibi çeşitli yer ve uzay tabanlı teleskoplar kullanarak gözlemledi.

Bilim insanları çarpışmanın Samanyolu galaksimizin tamamından bir milyon kat daha parlak olan, türünün en parlak patlamalarından birini oluşturmasını izledi. Patlama 200 saniye gibi nispeten uzun bir süre devam etti. Çarpışan nötron yıldızlarının yol açtığı bir gama ışını patlaması için alışılmadık olan bu sürenin, yakın zamana kadar imkansız olduğu düşünülüyordu.

Patlamanın ardından araştırmacılar tellür adlı önemli bir kimyasal element tespit etti. Dünya'daki yaşamı sürdürmek için gereken hayati maddelerden biri olan bu elementin keşfi, yaşamın ilk nasıl ortaya çıktığını açıklamaya katkı sağlayabilir.

Bilim insanları kilonova diye bilinen bu patlamaların Dünya'daki yaşam için gereken iyot ve toryum gibi diğer önemli maddelerin de kaynağı olabileceğine inanıyor.

Yeni çalışmanın başyazarı Radboud Üniversitesi'nden Andrew Levan şöyle diyor:

Dmitri Mendeleev'in elementlerin periyodik tablosunu yazmasının üzerinden 150 yıldan biraz uzun süre geçtikten sonra, James Webb Teleskobu sayesinde nihayet her şeyin nerede oluştuğunu anlayarak o son boşlukları doldurmaya başlayabilecek durumdayız.

Yeni bulgular, etrafımızdaki her şeyin anahtarı olan bu elementlerin çarpışan nötron yıldızlarında meydana geldiğine işaret ediyor.

Birmingham Üniversitesi'nden Ben Gompertz "Gama ışını patlamaları neredeyse ışık hızında hareket eden güçlü jetlerden ortaya çıkıyor ve bu durumda iki nötron yıldızı arasındaki çarpışmadan kaynaklanıyor. Bu yıl martta gözlemlediğimiz gama ışını patlamasını üretmek üzere çarpışmadan önce bu yıldızlar, birkaç milyar yıl boyunca dönerek birbirine yaklaşmıştı. Samanyolu'nun yaklaşık uzunluğu (aşağı yukarı 120 bin ışık yılı) kadar olan birleşme alanı kendi galaksilerinin dışında yer alıyor, yani birlikte fırlamış olmalılar" diyor.

Çarpışan nötron yıldızları çok ağır elementlerin sentezlenmesi için gereken koşulları sağlıyor ve bu yeni elementlerin radyoaktif ışıması, patlama sönerken tespit ettiğimiz kilonovaya güç veriyor. Son derece nadir görülen kilonovaların gözlemlenmesi ve incelenmesi çok zor, işte bu yüzden bu keşif çok heyecan verici.

Bulgular Nature'da yayımlanan "Heavy element production in a compact object merger observed by JWST" (JWST tarafından gözlemlenen kompakt bir nesne birleşmesinde ağır element oluşumu) başlıklı yeni bir makalede aktarıldı.

Independent Türkçe



Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
TT

Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)

Vishwam Sankaran Bilim ve Teknoloji Muhabiri 

Güneş'in, mevcut döngüsünün henüz yarısında olmasına rağmen bir sonraki faaliyet döngüsüne başladığının ilk işaretlerini tespit eden bilim insanlarının keşfi, Güneş fırtınalarının daha iyi modellenmesini sağlayabilir.

11 yıllık döngüler sırasında Güneş, leke sayısının ve aktivite yoğunluğunun artarak zirveye ulaşmasıyla yoğun Güneş fırtınaları ihtimalinin en yüksek seviyeye taşındığı dönemlerden geçiyor.

Güneş halihazırda 25. döngüsünün en yüksek aktivitesine, yani  "solar maksimuma" yaklaşıyor. Bu döngü, Güneş aktivitesinin kapsamlı bir şekilde kaydedilmeye başlandığı 1755'ten bu yana gerçekleşen 25. döngü olması nedeniyle bu şekilde adlandırılıyor.

Bu döngünün 6 yıl daha devam etmesi beklenirken, Birmingham Üniversitesi'nden bilim insanları bir sonraki Güneş döngüsünün ilk işaretlerini keşfetti.

Solar maksimum sırasında Güneş, manyetik alanını çevirerek kutuplarının yerini değiştiriyor ve bu da yıldızın yüzeyindeki aktiviteyi etkileyerek Dünya'ya daha fazla Güneş patlaması gönderiyor.

Güneş'in aktivitesinin tavan yaptığı dönemdeki güçlü Güneş fırtınaları, düşük irtifalarda bile parlak auroralara yol açabiliyor.

Ayrıca yörüngedeki uydulara, elektrik şebekelerine ve telekomünikasyon sistemlerine de zarar verebiliyorlar.

Araştırmacılar Güneş döngüsünü, yıldızın içindeki ses dalgalarını ölçüp bunların nasıl döndüğünü izleyerek takip ediyor.

Bunlar, 11 yıllık döngü boyunca Güneş'in ekvatoruna ve kutuplarına doğru dönen ve göç eden, Güneş burulma salınımı adlı hızlı hareket eden şeritlerden oluşan bir örüntü gibi görülebilir.

Bilim insanları daha hızlı dönen şeritlerin bir sonraki Güneş döngüsü başlamadan önce ortaya çıktığını biliyor.

Araştırmacılar, bu şekilde dönen şeritleri gösteren yeni verilere dayanarak bir sonraki Güneş döngüsünün başladığına dair zayıf işaretler buldu.

Birmingham Üniversitesi'nden Rachel Howe "Plan üzerinde bir Güneş döngüsü, yani 11 yıl geriye gidince, 2017'de gördüğümüz şekille birleşiyor gibi görünen benzer bir şey görülüyor. Bu şekil, mevcut Güneş döngüsü 25. Döngü'nün bir özelliği haline geldi" diyor.

2030'a kadar resmen başlamayacak 26. Döngü'nün muhtemelen ilk izlerini görüyoruz.

Bilim insanları daha fazla veriyle, Güneş'in faaliyet döngüsünü yönlendiren plazma ve manyetik alanların karmaşık dansında bu akışların oynadığı rolü daha iyi anlamayı umuyor.

Dr. Howe, "Yaklaşık 6 yıl sonra başlayacak 26. Döngü'de bu örüntünün tekrarlanacağına dair ilk ipucunu görmek heyecan verici" diyor.