Batarya geri dönüşümünde mikrodalga atılımı

Lityumun yüzde 87'si 15 dakikada geri alındı

Lityum iyon batarya sektörünün gelecek 8 yılda yüzde 23 büyümesi bekleniyor (Reuters)
Lityum iyon batarya sektörünün gelecek 8 yılda yüzde 23 büyümesi bekleniyor (Reuters)
TT

Batarya geri dönüşümünde mikrodalga atılımı

Lityum iyon batarya sektörünün gelecek 8 yılda yüzde 23 büyümesi bekleniyor (Reuters)
Lityum iyon batarya sektörünün gelecek 8 yılda yüzde 23 büyümesi bekleniyor (Reuters)

Bilim insanları batarya atıklarındaki lityumu daha hızlı ve etkili bir şekilde geri kazandıran yeni bir yöntem geliştirdi. 

Lityum hem hafifliği hem de yüksek enerji depolama kapasitesiyle elektrikli araçlar gibi pek çok alandaki bataryalarda kullanılıyor. 

Fakat lityum kaynağı azalırken, bu maddeyi geri dönüştürme yöntemleri yeterince başarı gösteremiyor. 

ABD'deki Rice Üniversitesi'nden araştırmacılar mikrodalga radyasyonu ve doğada ayrışabilen bir çözelti kullanarak lityum geri dönüşümünde önemli bir adım attı. 

Batarya geri dönüşümünde lityumun ayrıştırılması için ısıtılması gerekiyor. Ancak genellikle kullanılan yağ banyosu yöntemi hem uzun sürüyor hem de lityum zarar gördüğü için çok az bir kısmı geri alınıyor.

Advanced Functional Materials adlı hakemli dergide yayımlanan çalışmanın başyazarlarından Salma Alhashim "Lityum genellikle diğer tüm metallerden sonra çökeldiği için geri kazanım oranı çok düşük, bu nedenle amacımız lityumu özellikle nasıl hedefleyebileceğimizi bulmaktı" diyor.

Alhashim ve ekip arkadaşları batarya atığını, kolin klorür ve etilen glikolden oluşan bir çözeltiye batırdı. 

Araştırmacılar çözeltideki iki maddenin, bataryadaki lityumu diğer metallerden ayrıştırma becerisi ve kolin klorürün mikrodalga radyasyonunu emmesinden yola çıkarak bu yöntemi geliştirdi. 

Daha sonra bataryayı mikrodalga radyasyonuna maruz bırakan araştırmacılar, lityumu yağ banyosundan çok daha hızlı ve etkili bir şekilde ayrıştırmayı başardı. 

Bilim insanları sadece 15 dakikada bataryadaki lityumun yüzde 87'sini geri aldı. Yağ banyosunda bu işlem 12 saati buluyor. 

Makalenin diğer başyazarı Sohini Bhattacharyya "Bu sayede lityumu diğer metaller arasından seçerek süzebildik" diyerek ekliyor: 

Bu işlem için mikrodalga radyasyonu kullanmak, mutfaktaki bir mikrodalganın yiyecekleri hızla ısıtmasına benziyor. Enerji doğrudan moleküllere aktarılıyor ve bu da reaksiyonun geleneksel ısıtma yöntemlerinden çok daha hızlı gerçekleşmesini sağlıyor.

Araştırmacılar çözelti içeriğini değiştirerek bataryalardaki kobalt ve nikel gibi metallerin de geri dönüştürülebileceğini söylüyor.

Yeni çalışma artan lityum ihtiyacını daha çevre dostu bir şekilde karşılama açısından önemli bir adıma işaret ediyor. 

Çalışmanın sorumlu yazarı Pulickel Ajayan "Bu yöntem yalnızca geri kazanım oranını artırmakla kalmıyor, aynı zamanda çevresel etkiyi de en aza indiriyor" diyor.

Independent Türkçe, New Atlas, Science Daily, Advanced Functional Materials 



Gelişmiş kuantum sensörlerin sırrı üzümde mi saklı?

Üzümlerin büyük ölçüde sudan oluşması yeni teknolojilerin önünü açabilir (Fawaz, Nair, Volz)
Üzümlerin büyük ölçüde sudan oluşması yeni teknolojilerin önünü açabilir (Fawaz, Nair, Volz)
TT

Gelişmiş kuantum sensörlerin sırrı üzümde mi saklı?

Üzümlerin büyük ölçüde sudan oluşması yeni teknolojilerin önünü açabilir (Fawaz, Nair, Volz)
Üzümlerin büyük ölçüde sudan oluşması yeni teknolojilerin önünü açabilir (Fawaz, Nair, Volz)

Bilim insanları daha gelişmiş kuantum sensörler yapmak için üzüm kullanılabileceğini öne sürdü. 

Bir üzüm tanesini neredeyse tamamen ikiye kesip (parçaları birbirine bağlayan küçük bir kabuk parçası bırakarak) mikrodalga fırına koyunca plazma oluştuğu en az 30 yıldır biliniyor.

Bilim insanları üzümlerin boyutu ve geçirgenlikleri nedeniyle elektrik alanlarını hapsetmesi sonucu plazmanın ortaya çıktığını söylüyor. Benzer bir etki birbirine değen iki üzümle de yaratılabiliyor.

Diğer yandan evde böyle bir deney yapmanın, mikrodalga fırınları bozabileceğini eklemekte fayda var. 

Plazmayı yaratan elektriksel alanın nasıl oluştuğu daha önceki çalışmalarda incelenirken, Avustralya'daki Macquarie Üniversitesi'nden bir ekip üzümlerin manyetik alan etkisine odaklandı. 

Physical Review Applied adlı hakemli dergide yayımlanan makaleye göre üzümler, mikrodalga rezonatörü gibi davranarak daha iyi kuantum sensörlerinin önünü açabilir. 

Elektriksel alanı bir yere hapseden mikrodalga rezonatörleri, uydu teknolojisinden çeşitli kuantum sistemlerine kadar çeşitli alanlarda kullanılıyor. 

Kuantum mekaniğinin hakim olduğu kuantum sensörler, elektriksel ve manyetik alanlardaki değişimleri algılayarak çok daha isabetli hesaplamaları mümkün kılıyor.

Doktora öğrencisi Ali Fawaz liderliğindeki yeni çalışmada, deney için özel olarak üretilmiş nanoelmaslar kullanıldı.  

Nanoelmaslardaki karbon atomlarının bir kısmı değiştirilerek mıknatıs gibi davranan küçük renk merkezleri oluşturuldu. 

Bilim insanları daha sonra bir nanoelması, iki üzümün arasına koyarak ince bir lif tabakanın üstüne yerleştirdi. 

Ardından liften yeşil lazer ışığı geçirerek renk merkezlerinin kırmızı renkte parlamasını sağladılar. 

Araştırmacılar parlaklık seviyesinin manyetik alanın gücünü gösterdiğini söylüyor. Çalışmada bu alanın üzüm varken, üzüm olmayan deneye göre iki kat daha güçlü olduğu kaydedildi. 

Fawaz yaptığı açıklamada bulguları şöyle değerlendiriyor:

Önceki çalışmalar plazma etkisine neden olan elektriksel alanlara odaklanırken, biz üzüm çiftlerinin kuantum algılama uygulamaları için çok önemli olan manyetik alanları da güçlendirebileceğini gösterdik.

Fawaz bu güçlü manyetik alanın, üzümlerin yüksek oranda su içermesinden kaynaklandığını söylüyor:

Mikrodalga enerjisini yoğunlaştırmada su aslında safirden daha iyi ancak daha az kararlı ve bu süreçte daha fazla enerji kaybediyor. Çözmemiz gereken en önemli zorluk da bu.

Meyvedeki şekerin etkiyi azalttığını ekleyen araştırmacı, benzer bir zarla kaplı saf su torbalarının muhtemelen daha iyi performans sergileyeceğini düşünüyor.

Ayrıca bilim insanları 27 milimetre uzunluğundaki üzümlerin istenen sonucu verdiğini belirtiyor.

Independent Türkçe, IFLScience, Interesting Engineering, Ars Technica, Physical Review Applied, BAE Systems