Kafa üstü kara dalan tilkiler yaralanmamayı nasıl başarıyor?

Saniyede 4 metre hızla atlıyorlar

Tilkiler, avlarını kar tabakasının derinlerinde bile rahat bırakmıyor (Unsplash)
Tilkiler, avlarını kar tabakasının derinlerinde bile rahat bırakmıyor (Unsplash)
TT

Kafa üstü kara dalan tilkiler yaralanmamayı nasıl başarıyor?

Tilkiler, avlarını kar tabakasının derinlerinde bile rahat bırakmıyor (Unsplash)
Tilkiler, avlarını kar tabakasının derinlerinde bile rahat bırakmıyor (Unsplash)

Bilim insanları kara dalıp yaralanmamayı başaran tilkilerin bu beceriyi burunlarının şekline borçlu olduğunu tespit etti.

Soğuk iklimlerde fareler gibi küçük kemirgenler, karın altında sığınacak yerler buluyor. Ancak kızıl tilki (Vulpes vulpes) ve kutup tilkileri (Vulpes lagopus), geliştirdikleri özel bir teknikle bu hayvanları avlamayı başarıyor. 

Güçlü kulaklarıyla kemirgenlerin yerini saptayıp havaya zıplayan tilkiler, saniyede 4 metreye varan hızla yüksek kar yığınlarına yüzüstü dalarak onları gafil avlıyor. 

Cornell Üniversitesi'nden Sunghwan Jung, bu "ilginç ve benzersiz" davranışı bütün tilkilerin sergilemediğini ifade ediyor.

Hayvanların kara dalınca yüzlerinin nasıl yaralanmadığını anlamak isteyen Jung ve ekip arkadaşları bir araştırma yürüttü.

Bulgularını hakemli dergi PNAS'te yayımlayan bilim insanları, müzelerdeki puma gibi büyük kedi türleri ve tilkilerin kafataslarını tarayarak üç boyutlu yazıcıdan çıkardı. 

Ardından kafataslarına çarpma kuvvetini ölçen sensörler yerleştirerek bunları laboratuvarda karın içine attılar.

Jung, karın sıkıştığı zaman kartopu gibi katı veya bir araba camından silindiği zamanki gibi sıvı özellikler sergileyebildiğini açıklıyor. 

Araştırmada tilkilerin keskin burnunun karı sıkıştırmak yerine sıvı gibi kenara ittiği gözlemlendi. Bu sayede çarpma kuvveti azalarak yaralanma ihtimali düşüyor.

Diğer yandan kedigillerin, tilkilere kıyasla daha geniş ve kısa burunları karı sıkıştırıyor. Jung bu burun tipinin, daha iyi ısırma avantajı sağlayarak genellikle yalnız avlanan kedigillerin işine yaradığını söylüyor.

Sürüler halinde avlanan tilkilerinse daha uzun burunları, ısırma becerilerini zayıflatıyor. Ancak karın içine dalma imkanı veriyor.

Jung, "Tilki böylece bilincini kaybetmeden avlanma görevine odaklanabiliyor" diyerek ekliyor:

Uzun burunları, karda daha derine inerek avlarına daha erken ve daha hızlı ulaşmalarına yardımcı oluyor.

Independent Türkçe, Wall Street Journal, New Scientist, PNAS



NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
TT

NASA'dan insanları parçalayabilecek "zombi yıldız"a yakın takip

NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)
NASA'nın Hubble Uzay Teleskobu, inanılmaz derecede güçlü bir manyetik alana sahip ölü bir yıldız olan Magnetar SGR 0501+4516'yı, Samanyolu'ndan geçerken izliyor (ESA/NASA)

Anthony Cuthbertson Teknoloji Editör Yardımcısı @ADCuthbertson 

NASA, saatte 177 bin kilometreden daha hızlı bir şekilde galaksimizde ilerleyen, yıkıcı etkiler yaratma potansiyeline sahip bir "zombi yıldız"ı takip ediyor.

Son derece yoğun cisim, Samanyolu'nda bilinen 30 magnetarda biri. Magnetarlar, tamamen nötronlardan oluşan ölü yıldız kalıntılarını ifade ediyor.

Sadece 20 kilometre çapa sahip Magnetar SGR 0501+4516'nın Güneş'ten daha fazla kütlesi var ve manyetik alanı, Dünya'nın manyetosferinden yaklaşık 1 trilyon kat daha güçlü.

Magnetar, Hubble Uzay Teleskobu'nu kullanan araştırmacılar tarafından keşfedildi ve NASA bu "kaçak" cismi, "çizgi roman kahramanlarının süper güçlerine sahip" diye tanımlıyor.

NASA'nın Hubble Misyonu ekibi keşfi detaylandırdıkları blog yazısında, magnetarın evrenin bilinmeyen bir bölümünden geldiğini ancak evrenin en büyük gizemlerinden bazılarına ışık tutabileceğini belirtiyor.

Ekip, "Bir kişi magnetarın 600 mil (yaklaşık bin kilometre) yakınına gelse gökcismi, vücuttaki her atomu parçalayan, bilimkurgu filmlerinin meşhur ölüm ışınına dönüşür" diye yazıyor.

Bu kaçak magnetar, Samanyolu Galaksisi'ndeki örnekler arasında, başlangıçta tahmin edildiği gibi süpernova patlamasıyla oluşmama ihtimali en yüksek magnetar adayı. O kadar tuhaf ki hızlı radyo patlamaları diye bilinen olayların ardındaki mekanizmaya dair ipuçları bile sunabilir.

Görsel kaldırıldı.Magnetar adı verilen ultra güçlü manyetik alana sahip bir nötron yıldızının radyo dalgaları (kırmızı) yaymasının, bir sanatçı tarafından tasviri. Magnetarlar, hızlı radyo patlamalarını yaratan başlıca adaylar arasında yer alıyor (Bill Saxton/NRAO/AUI/NSF)


Gökbilimciler daha önce Magnetar SGR 0501+4516'nın komşu bir süpernovanın çekirdeğinin çökmesiyle oluştuğunu düşünüyordu ancak yeni gözlemler doğum yeri hakkında şüpheler uyandırdı.

Bu keşif magnetarın ya 20 bin diye bildirilen yaşından çok daha yaşlı olduğu ya da iki nötron yıldızının birleşmesiyle oluştuğu anlamına geliyor.

Keşfi yapan ekibe liderlik eden Ashley Chrimes, "Magnetarlar, tamamen nötronlardan oluşan nötron yıldızlarıdır (yıldızların ölü kalıntıları)" diyor.

Magnetarları benzersiz kılan şey, Dünya'daki en güçlü mıknatıslardan milyarlarca kat daha güçlü olan aşırı kuvvetli manyetik alanları.

İspanya'nın Barselona kentindeki Uzay Bilimleri Enstitüsü'nden Nanda Rea ise şöyle ekliyor:

Magnetarların doğum oranları ve oluşum senaryoları, yüksek enerji astrofiziğinde en acil sorular arasında yer alıyor. Bunların, gama ışını patlamaları, son derece parlak süpernovalar ve hızlı radyo patlamaları gibi evrenin en güçlü geçici olaylarının çoğu üzerinde etkisi var.

Araştırma ekibi, magnetarın Samanyolu'ndaki güzergahını ve kökenini daha iyi anlamak için gözlemlerine devam edecek.


 Independent Türkçe, independent.co.uk/space