Bilim insanlarından Güneş’te ‘Kuzey Işıkları’ keşfi

Güneş’te benzeri görülen ‘Kuzey ışıkları’ gezegenimizdeki en çarpıcı manzaralardan biri.
Güneş’te benzeri görülen ‘Kuzey ışıkları’ gezegenimizdeki en çarpıcı manzaralardan biri.
TT

Bilim insanlarından Güneş’te ‘Kuzey Işıkları’ keşfi

Güneş’te benzeri görülen ‘Kuzey ışıkları’ gezegenimizdeki en çarpıcı manzaralardan biri.
Güneş’te benzeri görülen ‘Kuzey ışıkları’ gezegenimizdeki en çarpıcı manzaralardan biri.

Bilim insanları çarpıcı bir ilke imza atarak Güneş'in atmosferinde ‘Kuzey ışıkları’na benzer bir oluşum keşfetti.

New Jersey Teknoloji Enstitüsü'nden Siji Yu liderliğindeki bir gökbilimci ekip, güneş fotosferinde büyüyen bir güneş lekesinin yaklaşık 40 bin kilometre (25 bin mil) üzerinde, benzeri görülmemiş türde uzun süreli bir radyo emisyonu kaydetti. Ancak Siji Yu Güneş radyasyon yayarken meydana gelen olayın ‘Kuzey ışıkları’na benzemediğini söyledi.

Siji Yu durumu şöyle açıkladı:

“Güneş lekelerinden kaynaklanan ve bir haftadan fazla süren garip bir tür uzun süreli polarize radyo patlamaları keşfettik. Bu, dakikalar veya saatler süren tipik geçici güneş radyo patlamalarından çok farklı. Bu, yıldız manyetik süreçlerine ilişkin anlayışımızı değiştirme potansiyeline sahip heyecan verici bir keşif.”

Söz konusu çalışmadan elde edilen bilgiler Nature Astronomy adlı bilimsel derginin Science Alert internet sitesinde yer alan haberinde yer aldı.

Parlayan, dalgalı ‘Kuzey ışıkları’ gezegenimizdeki en çarpıcı manzaralardan biri. Ancak şekli büyük ölçüde değişse bile kendi gezegenimize özgü değil. Zira Güneş sistemindeki tüm büyük gezegenlerde, hatta Jüpiter'in dört uydusunda bile keşfedildi.

Kuzey ışıkları, Güneş parçacıklarının manyetik alan çizgilerine hapsolmasıyla oluşuyor. Bu çizgiler hızlandırıcı görevi görerek parçacıkların enerjisini artırıyor ve genellikle atmosferde birikerek buradaki atom ve moleküllerle etkileşime giriyor. Böylece Dünya'da bir parıltı oluşturuyor. Söz konusu parıltı gökyüzünde görebiliyoruz. Ancak görünür ışık, emisyon spektrumunun yalnızca bir parçası.

Güneş, radyo aktivitesi patlamaları da dahil olmak üzere diğer süreçler yoluyla çok sayıda radyo emisyonu yaymasına rağmen, Güneş lekelerinin üzerinde dönen emisyon, profil olarak radyo Kuzey ışıkları ile benzerlik gösteriyordu.

Güneş lekelerinin, Güneş plazmasını daraltan alışılmadık derecede güçlü manyetik alan bölgelerinden kaynaklanan Güneş yüzeyindeki (fotosferindeki) geçici daha karanlık ve daha soğuk alanlar olduğu biliniyor. Güneş sisteminde hiçbir yer güneşin kendisi kadar Güneş parçacıklarıyla dolu değildir. Bu nedenle Güneş parçacıklarının manyetik alan ivmesinin orada meydana gelebileceği mantıklıdır. Ancak Dünya'dakinden çok daha güçlüdür. Bu daha güçlü Güneş manyetik alanlarından kaynaklanmaktadır.

Şarku’l Avsat’ın edindiği bilgilere göre Siji Yu duruma ilişkin şunları söyledi:

“Ekip tarafından yürütülen uzamsal ve zamansal analiz, emisyonların yakın bir manyetik alan geometrisi içinde hapsolmuş enerjik elektronları içeren elektron siklotron masher (ECM) emisyonundan kaynaklandığını gösteriyor. Güneş lekelerinin soğuk ve yoğun manyetik bölgeleri, ECM emisyonunun meydana gelmesi için uygun bir ortam sağlayarak, diğer gezegenlerin ve yıldızların manyetik kutup zirveleriyle paralellikler kuruyor ve potansiyel olarak bu fenomenleri incelemek için yerel bir güneş benzerliği sağlıyor. Aslında bir yıldızın auroral radyo sinyalleri yayması duyulmamış bir şey değil. Ancak birkaç yıl önce, bir grup bilim insanı olağandışı radyo dalgaları yayan bir dizi yıldız tespit etti. Bu yıldızların yörüngesinde, atmosferi yıldızın içine doğru akarak auroral emisyona neden olan bir ötegezegenin varlığına bağladılar. Güneş sistemindeki gezegenler benzer bir etki yaratmak için güneşten çok uzaktadır, ancak uzak bir yıldızda gözden kaçırabileceğimiz soluk Kuzey ışıkları görmek için güneşe yeterince yakınız.”

Araştırmacılar, güneş lekelerinden uzak olmayan bölgelerdeki parlamaların, Güneş lekelerinde kök salmış manyetik alan halkalarına enerjik elektronlar gönderdiğini ve araştırmacılarındedikleri şeyi tetiklediğine inanıyor. Siji Yu  açıklamasında “Bu, ilgili mekanizmalar için şimdiye kadarki en net kanıtlardan biridir ve yıldız manyetik aktivitesini ve uzak yıldızlardaki yıldız lekelerinin davranışını incelemek için yeni yollar önermektedir” dedi.

Ekip şu an arşiv verilerini inceleyerek geçmişteki güneş aktivitesi patlamalarında aurora borealis kanıtı bulup bulamayacaklarını görmeyi planlıyor.

New Jersey Teknoloji Enstitüsü'nden güneş fizikçisi Surajit Mondal ise konuya dair şunları söyledi:

“Sadece Güneş'te değil, güneş sistemimizin dışındaki yıldızlarda da uzun ömürlü yıldız lekelerinin bulunduğu bir sistemde enerjik parçacıkların ve manyetik alanların nasıl etkileşime girdiğine dair bulmacayı bir araya getirmeye başlıyoruz.”



Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
TT

Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)

Vishwam Sankaran Bilim ve Teknoloji Muhabiri 

Güneş'in, mevcut döngüsünün henüz yarısında olmasına rağmen bir sonraki faaliyet döngüsüne başladığının ilk işaretlerini tespit eden bilim insanlarının keşfi, Güneş fırtınalarının daha iyi modellenmesini sağlayabilir.

11 yıllık döngüler sırasında Güneş, leke sayısının ve aktivite yoğunluğunun artarak zirveye ulaşmasıyla yoğun Güneş fırtınaları ihtimalinin en yüksek seviyeye taşındığı dönemlerden geçiyor.

Güneş halihazırda 25. döngüsünün en yüksek aktivitesine, yani  "solar maksimuma" yaklaşıyor. Bu döngü, Güneş aktivitesinin kapsamlı bir şekilde kaydedilmeye başlandığı 1755'ten bu yana gerçekleşen 25. döngü olması nedeniyle bu şekilde adlandırılıyor.

Bu döngünün 6 yıl daha devam etmesi beklenirken, Birmingham Üniversitesi'nden bilim insanları bir sonraki Güneş döngüsünün ilk işaretlerini keşfetti.

Solar maksimum sırasında Güneş, manyetik alanını çevirerek kutuplarının yerini değiştiriyor ve bu da yıldızın yüzeyindeki aktiviteyi etkileyerek Dünya'ya daha fazla Güneş patlaması gönderiyor.

Güneş'in aktivitesinin tavan yaptığı dönemdeki güçlü Güneş fırtınaları, düşük irtifalarda bile parlak auroralara yol açabiliyor.

Ayrıca yörüngedeki uydulara, elektrik şebekelerine ve telekomünikasyon sistemlerine de zarar verebiliyorlar.

Araştırmacılar Güneş döngüsünü, yıldızın içindeki ses dalgalarını ölçüp bunların nasıl döndüğünü izleyerek takip ediyor.

Bunlar, 11 yıllık döngü boyunca Güneş'in ekvatoruna ve kutuplarına doğru dönen ve göç eden, Güneş burulma salınımı adlı hızlı hareket eden şeritlerden oluşan bir örüntü gibi görülebilir.

Bilim insanları daha hızlı dönen şeritlerin bir sonraki Güneş döngüsü başlamadan önce ortaya çıktığını biliyor.

Araştırmacılar, bu şekilde dönen şeritleri gösteren yeni verilere dayanarak bir sonraki Güneş döngüsünün başladığına dair zayıf işaretler buldu.

Birmingham Üniversitesi'nden Rachel Howe "Plan üzerinde bir Güneş döngüsü, yani 11 yıl geriye gidince, 2017'de gördüğümüz şekille birleşiyor gibi görünen benzer bir şey görülüyor. Bu şekil, mevcut Güneş döngüsü 25. Döngü'nün bir özelliği haline geldi" diyor.

2030'a kadar resmen başlamayacak 26. Döngü'nün muhtemelen ilk izlerini görüyoruz.

Bilim insanları daha fazla veriyle, Güneş'in faaliyet döngüsünü yönlendiren plazma ve manyetik alanların karmaşık dansında bu akışların oynadığı rolü daha iyi anlamayı umuyor.

Dr. Howe, "Yaklaşık 6 yıl sonra başlayacak 26. Döngü'de bu örüntünün tekrarlanacağına dair ilk ipucunu görmek heyecan verici" diyor.