Nörologlar "Beyin kendini yeniden yapılandırıyor" kabulüne karşı çıktı

"Biz bilim insanıyız, sihre inanmıyoruz"

Bilim insanları, beynin kendini yeniden yapılandırdığına dair yaygın kabullerin doğruluğunu kanıtlayan hiçbir sonuç bulamadıklarını ifade etti (Unsplash)
Bilim insanları, beynin kendini yeniden yapılandırdığına dair yaygın kabullerin doğruluğunu kanıtlayan hiçbir sonuç bulamadıklarını ifade etti (Unsplash)
TT

Nörologlar "Beyin kendini yeniden yapılandırıyor" kabulüne karşı çıktı

Bilim insanları, beynin kendini yeniden yapılandırdığına dair yaygın kabullerin doğruluğunu kanıtlayan hiçbir sonuç bulamadıklarını ifade etti (Unsplash)
Bilim insanları, beynin kendini yeniden yapılandırdığına dair yaygın kabullerin doğruluğunu kanıtlayan hiçbir sonuç bulamadıklarını ifade etti (Unsplash)

ABD'li ve Britanyalı bilim insanlarından oluşan uluslararası bir ekip, yaygın kanının aksine görme kaybı, ampütasyon ya da felç sonrasında beynin kendini yeniden yapılandırma yeteneğine sahip olmadığını öne sürdü.

Birleşik Krallık'taki Cambridge Üniversitesi'nden nörolog Prof. Tamar Makin ve ABD'de Johns Hopkins Üniversitesi'nden John Krakuer'in konuyla ilgili araştırmaları, 21 Kasım'da hakemli bilimsel dergi eLife'da yayımlandı.

Çalışmaya göre bilim insanları, beynin herhangi bir yaralanma ya da tıbbi duruma reaksiyon olarak kendini yeniden yapılandıracağına dair genel kabulün temelden kusurlu olduğunu savunuyor.

Bilim insanları, bunun yerine beynin halihazırda var olan ancak gizli olan yetenekleri ortaya çıkardığını öne sürüyor. 

Bilimsel yayınlarda sık sık dile getiriliyor

Bilimsel ders kitaplarında beynin bazı bölgelerinin yeni işlevler için kendini yeniden yapılandırdığı sık sık dile getirilir. 

Örneğin birçok kişi, bir kişi görme yeteneğini kaybettiğinde beynin, sesleri işleyecek şekilde görsel korteksi yeniden yapılandırabildiği ve bu sayede yön bulmayı kolaylaştırdığına inanıyor. 

Buna insanların cisimlerden gelen yankıları hissedip o cisimleri tespit etmesini sağlayan ekolokasyon kabiliyeti deniyor. 

Araştırmada bu duruma bir başka örnek olarak, felç geçiren bir kişinin başlangıçta uzuvlarını hareket ettiremediği zaman beynin bazı kısımlarının kendini düzenleyerek kontrolü yeniden kazandığı fikri gösteriliyor. 

Yeni yetenekler mucize değil, her zaman oradaydı

Krauker, insan beyninin kendini yeniden yapılandırma ve düzenleme konusunda müthiş bir yeteneğe sahip olduğu fikrinin çok çekici olduğunu dile getirdi ve ekledi: 

Özellikle de körlerin neredeyse insanüstü ekolokasyon yeteneği geliştirdiğine ya da felç geçirenlerin kaybettikleri motor becerilerini mucizevi bir şekilde geri kazandıklarına dair hikayeler umut veriyor.

Bu düşüncenin basit bir uyum sağlama ya da plastisitenin (beynin yapısal veya fizyolojik değişikliklere uğrama yeteneği) ötesine geçtiğini aktaran Krauker, "Bu, beyindeki bölgelerin komple yeniden tasarlanması anlamına geliyor. Bu hikayeler doğru olsa bile, aslında orada olan biten yanlış açıklanıyor" dedi. 

Daha önce yapılan çalışmalar, beynin uyum sağlama yeteneğine sahip olduğunu gösteriyor. 

Fakat Makin ve Krauker, beynin daha önce öne sürüldüğü gibi aktif olarak yeni işlevler yaratmadığını, kullanılan alanların aslında doğumdan beri var olduğunu söyledi. 

Daha önceki araştırmalar da incelendi

1980'lerde yapılan bir çalışmada, parmak ampütasyonun vücuda etkisi incelendi. 

Araştırmaya göre beynin daha önce parmağa verdiği uyarının parmak kesildikten sonra yeniden görüldüğünü belirtti. 

Ekip, bunun beynin değişime tepki olarak kendini nasıl yeniden yapılandırdığını gösterdiğini savundu.

Fakat Prof. Makin 2022'de yaptığı bir çalışmada bu durumun böyle olmayacağına dair kanıtlar ortaya koymuştu. 

İşaret parmağının kesilmesinin etkisini geçici olarak taklit etmek için sinir engelleyicileri kullandı.

Makin, ampütasyondan önce, diğer parmaklardan gelen sinyallerin beynin işaret parmağından sorumlu olduğu söylenen bölgesiyle eşleştiğini gördü. 

Buna göre beynin bu bölgesinin ilk olarak işaret parmağından gelen sinyalleri işlediği ancak bunu tek başına yapmadığı ortaya kondu. 

Çalışmada, simülasyonun ardından, diğer parmaklardan gelen mevcut sinyallerin de arttığı görüldü. 

Bu bölgelerde yeni bilgilerin baştan ortaya çıkmadığını belirten Makin, "Beynin incelenen bu bölgesinde diğer parmaklara ilişkin yetenekler ampütasyondan önce de vardı" dedi.

Bilim insanları makalelerinde, kendi araştırmalarının yanı sıra başka çalışmaları da inceleyerek yaygın kabullerin doğru olduğunu kanıtlayan hiçbir sonucun olmadığını belirtti. 

"Bizler bilim insanıyız, sihre inanmıyoruz" diyen Makin, beynin belli işlevleri yerine getirmek için temelden bu yeteneklere sahip olduğunu belirtiyor. 

Independent Türkçe



Yapay zekanın "düşüncelerini" açığa çıkaran elektronik dil geliştirildi

Elektronik dil, grafen ve yapay sinir ağı kullanarak farklı tatları algılıyor (Das Lab)
Elektronik dil, grafen ve yapay sinir ağı kullanarak farklı tatları algılıyor (Das Lab)
TT

Yapay zekanın "düşüncelerini" açığa çıkaran elektronik dil geliştirildi

Elektronik dil, grafen ve yapay sinir ağı kullanarak farklı tatları algılıyor (Das Lab)
Elektronik dil, grafen ve yapay sinir ağı kullanarak farklı tatları algılıyor (Das Lab)

Bilim insanları farklı tatları insandan daha iyi ayırt edebilen elektronik bir dil geliştirdi.

ABD'deki Pensilvanya Eyalet Üniversitesi'nden bir ekip, grafen bazlı cihazın kimyasal ve çevresel değişikliklerin tespitinde "devrim yaratma" potansiyeline sahip olduğunu iddia ederken bu, tıbbi teşhislerden yiyeceklerin bozulduğunu tespit etmeye kadar her türlü alanda kullanılabilir.

Yeni teknoloji ayrıca yapay zekanın "içsel düşünceleri" hakkında benzersiz bir içgörü sunuyor. Kara kutu sorunu denen bir durum nedeniyle bu alan bugüne kadar büyük ölçüde karanlıkta kalmıştı.

Ekip, sinir ağının çeşitli süt, kahve ve gazlı içecek türleri arasındaki farkları belirlerken nihai karara varma yolu üzerinde tersine mühendislik yaparak bunu başardı.

Bu süreç araştırmacıların "sinir ağının karar verme sürecine ışık tutmasını" sağlarken, bunun daha iyi bir yapay zeka güvenliği ve gelişimine yol açabileceğini öne sürüyorlar.

Pensilvanya Eyalet Üniversitesi'nde mühendislik bilimi ve mekanik profesörü Saptarshi Das, "Yapay bir dil yapmaya çalışıyoruz fakat farklı yiyecekleri deneyimleme sürecimize sadece dil dahil olmuyor" diyor.

Elimizde, gıda türleriyle etkileşime girerek bilgileri biyolojik sinir ağı olan tat alma korteksine gönderen tat reseptörlerinden oluşan dilin kendisi var.

Elektronik dil tarafından kullanılan sinir ağı, insan seçimi parametrelere kıyasla en az yüzde 95 daha yüksek bir tat alma doğruluğuna ulaşmayı başardı.

Araştırmacılar, Shapley eklemeli açıklamalar adlı bir yöntem kullanarak sinir ağının karar verme sürecini derinlemesine inceledi.

Sinir ağı farklı tatları değerlendirirken, insan tarafından atanan parametreleri tek tek incelemek yerine, en önemli olduğunu belirlediği verileri dikkate aldı.

Profesör Das, "Ağın verilerdeki daha ince özelliklere, biz insanların düzgün bir şekilde tanımlamakta zorlandığımız şeylere baktığını gördük" diyor.

Ve sinir ağı, sensör özelliklerini bütünsel olarak değerlendirdiği için günden güne meydana gelebilecek değişiklikleri azaltıyor. Süt örneğinde, sinir ağı sütün değişen su içeriğini saptayarak bu bağlamda herhangi bir bozulma göstergesinin, gıda güvenliği sorunu olarak değerlendirilecek kadar anlamlı olup olmadığını belirleyebilir.

Araştırma, hakemli dergi Nature'da yayımlanan "Robust chemical analysis with graphene chemosensors and machine learning" (Grafen kemosensörler ve makine öğrenimiyle güçlü kimyasal analiz) başlıklı çalışmada detaylandırılıyor.

Independent Türkçe