Kara delikler yuttuğu yıldızların kalıntılarını "geğirerek" atıyor

"Kara delikler kesinlikle dağınık yiyiciler"

İllüstrasyonda bir gelgit kesintisi olayı, yani bir kara deliğin bir yıldızı parçalayıp yutması resmediliyor (Sophia Dagnello / Ulusal Radyo Astronomi Gözlemevi)
İllüstrasyonda bir gelgit kesintisi olayı, yani bir kara deliğin bir yıldızı parçalayıp yutması resmediliyor (Sophia Dagnello / Ulusal Radyo Astronomi Gözlemevi)
TT

Kara delikler yuttuğu yıldızların kalıntılarını "geğirerek" atıyor

İllüstrasyonda bir gelgit kesintisi olayı, yani bir kara deliğin bir yıldızı parçalayıp yutması resmediliyor (Sophia Dagnello / Ulusal Radyo Astronomi Gözlemevi)
İllüstrasyonda bir gelgit kesintisi olayı, yani bir kara deliğin bir yıldızı parçalayıp yutması resmediliyor (Sophia Dagnello / Ulusal Radyo Astronomi Gözlemevi)

Yıldızları yutan kara deliklerin neredeyse yarısı, yıllar sonra bunların kalıntılarını "geğirerek" dışarı atıyor.

Gökbilimciler bu keşfi, gelgit kesintisi olaylarına (tidal disruption events / TDE) karışan kara delikleri yıllarca gözlemledikten sonra yaptı.

TDE'ler, yıldızlar kara deliklere çok yaklaştığında meydana geliyor.

Bu kozmik canavarların muazzam kütle çekim kuvveti, yıldızları geren ve sıkıştıran muazzam gelgit kuvvetleri uyguluyor. Yıldızın bir iplik gibi yutulduğu bu sürece spagettileşme adı veriliyor.

TDE'lerde yer alan talihsiz yıldızlar, görünür ışıkta güçlü bir elektromanyetik radyasyon parlaması sinyali yayarak kısa süre içinde parçalanıyor.

Yok edilen yıldızın malzemesinin bir kısmı kara delikten uzağa fırlatılırken, geri kalanı da cismin etrafını saran ve onu yavaş yavaş besleyen yığılma diskini oluşturuyor.

Kara deliğin etrafındaki parlak, halka şeklinde yapıyı meydana getiren bu disk, ilk günlerinde epey dengesiz davranıyor. Madde etrafa savrulup kendi içine çarparak dışarı akışlara neden oluyor.

Gökbilimciler burada yayılan radyo dalgalarını izleyerek TDE'leri birkaç ay boyunca takip edebiliyor.

Yeni araştırmadaysa gökbilimciler, TDE'lere karışan kara delikleri çok daha uzun süre izledi.

Böylece vakaların yaklaşık 50'sinde kara deliklerin, TDE'den yıllar sonra yıldız maddesini "geri püskürttüğü" anlaşıldı.

Araştırmacı Yvette Cendes, "Yıllar sonra bakarsanız, erken zamanlarda radyo emisyonu yaymayan kara deliklerin çok ama çok büyük bir kısmı aniden 'açılıyor'" dedi.

Havard ve Smithsonian Astrofizik Merkezi'nde görev alan araştırmacı, Livescience'a yaptığı açıklamada şu ifadeleri kullandı:

Ben buna 'geğirme' diyorum çünkü bu malzemenin, insanların beklediğinden çok daha geç bir zamana kadar yığılma diskinden çıkmaması nedeniyle bir tür gecikme yaşanıyor.

Bu malzeme püskürmesi 24 kara deliğin 10'unda gözlemlendi.

Püskürmenin yıldızın yok olmasından iki ila altı yıl sonra meydana geldiği not edildi.

Henüz hakem onayından geçmeyen ve 25 Ağustos'ta bilimsel makale arşivi arXiv'de yayımlanan gözlemler, kara deliklerin işleyişine dair önemli ipuçları sağlayabilir.

Cendes ve ekibi, kara deliklerin yıllar sonra "açılmasına" neyin sebep olduğunu bilmiyor. Ancak bu malzeme akışının kara deliğin içinden gelmediğinden eminler.

Zira kara deliklerin olay ufkunun ötesinde, ışığın bile kaçamayacağı kadar güçlü kütle çekim kuvvetleri var. Bir kara deliğe artık ışığın bile kaçamayacağı kadar yakın olan bölgeye olay ufku adı veriliyor.

Cendes, "Kara delikler, siz olay ufkunu geçmeden önce bile çok aşırı kütle çekimsel ortamlar" diyor:

Radyo dalgalarında gözlemlenen malzemenin yığılma diskinden mi geldiğini yoksa kara deliğe daha yakın bir yerde mi depolandığını tam olarak anlamıyoruz. Ancak kara delikler kesinlikle dağınık yiyiciler.

Independent Türkçe



Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
TT

Güneş sıradaki döngüsünün ilk işaretini yıllar önceden gösterdi

5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)
5 Mayıs 2024'te meydana gelen büyük Güneş lekesi (NASA/SDO/HMI)

Vishwam Sankaran Bilim ve Teknoloji Muhabiri 

Güneş'in, mevcut döngüsünün henüz yarısında olmasına rağmen bir sonraki faaliyet döngüsüne başladığının ilk işaretlerini tespit eden bilim insanlarının keşfi, Güneş fırtınalarının daha iyi modellenmesini sağlayabilir.

11 yıllık döngüler sırasında Güneş, leke sayısının ve aktivite yoğunluğunun artarak zirveye ulaşmasıyla yoğun Güneş fırtınaları ihtimalinin en yüksek seviyeye taşındığı dönemlerden geçiyor.

Güneş halihazırda 25. döngüsünün en yüksek aktivitesine, yani  "solar maksimuma" yaklaşıyor. Bu döngü, Güneş aktivitesinin kapsamlı bir şekilde kaydedilmeye başlandığı 1755'ten bu yana gerçekleşen 25. döngü olması nedeniyle bu şekilde adlandırılıyor.

Bu döngünün 6 yıl daha devam etmesi beklenirken, Birmingham Üniversitesi'nden bilim insanları bir sonraki Güneş döngüsünün ilk işaretlerini keşfetti.

Solar maksimum sırasında Güneş, manyetik alanını çevirerek kutuplarının yerini değiştiriyor ve bu da yıldızın yüzeyindeki aktiviteyi etkileyerek Dünya'ya daha fazla Güneş patlaması gönderiyor.

Güneş'in aktivitesinin tavan yaptığı dönemdeki güçlü Güneş fırtınaları, düşük irtifalarda bile parlak auroralara yol açabiliyor.

Ayrıca yörüngedeki uydulara, elektrik şebekelerine ve telekomünikasyon sistemlerine de zarar verebiliyorlar.

Araştırmacılar Güneş döngüsünü, yıldızın içindeki ses dalgalarını ölçüp bunların nasıl döndüğünü izleyerek takip ediyor.

Bunlar, 11 yıllık döngü boyunca Güneş'in ekvatoruna ve kutuplarına doğru dönen ve göç eden, Güneş burulma salınımı adlı hızlı hareket eden şeritlerden oluşan bir örüntü gibi görülebilir.

Bilim insanları daha hızlı dönen şeritlerin bir sonraki Güneş döngüsü başlamadan önce ortaya çıktığını biliyor.

Araştırmacılar, bu şekilde dönen şeritleri gösteren yeni verilere dayanarak bir sonraki Güneş döngüsünün başladığına dair zayıf işaretler buldu.

Birmingham Üniversitesi'nden Rachel Howe "Plan üzerinde bir Güneş döngüsü, yani 11 yıl geriye gidince, 2017'de gördüğümüz şekille birleşiyor gibi görünen benzer bir şey görülüyor. Bu şekil, mevcut Güneş döngüsü 25. Döngü'nün bir özelliği haline geldi" diyor.

2030'a kadar resmen başlamayacak 26. Döngü'nün muhtemelen ilk izlerini görüyoruz.

Bilim insanları daha fazla veriyle, Güneş'in faaliyet döngüsünü yönlendiren plazma ve manyetik alanların karmaşık dansında bu akışların oynadığı rolü daha iyi anlamayı umuyor.

Dr. Howe, "Yaklaşık 6 yıl sonra başlayacak 26. Döngü'de bu örüntünün tekrarlanacağına dair ilk ipucunu görmek heyecan verici" diyor.